OFFSET
1,2
COMMENTS
This sequence and its reciprocal sum are unique: there exists only one self-reciprocating sequence whose terms are exactly equal to the integer part of the powers of the sum of the reciprocal terms of the same sequence.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..500
FORMULA
a(n) = floor[S^n], where S=1.776791425488... = Sum 1/a(k), k=1, 2, 3, ... The n-th term of the sequence is the integer part of the n-th power of the sum of the infinite series of reciprocal terms of this same sequence.
The constant S = Sum_{n>=1} 1/a(n) is more precisely given by:
S = 1.7767914254 8765842099 7295125934 3751657100 4017014991 1002131974 4535225732 9321570657 9706460392 2109445017 4890160620 5702665489 ... (cf. A195202).
EXAMPLE
1=[S], 3=[S^2], 5=[S^3], 9=[S^4], 17=[S^5], 31=[S^6], 55=[S^7], ... where S=1/1 + 1/3 + 1/5 + 1/9 + 1/17 + 1/31 + 1/55 + 1/99 + 1/176 +...
MATHEMATICA
digits = 200; Clear[s]; s[m_] := s[m] = x /. FindRoot[x==Sum[1/Floor[x^n], {n, 1, m}], {x, 3/2, 2}, WorkingPrecision -> digits]; s[0] = 0; dm = 100; s[m = dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], m = m + dm; Print[m, " terms"]]; S = s[m]; a[n_] := Floor[S^n]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 13 2015 *)
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Paul D. Hanna, Dec 14 2001
STATUS
approved