login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371911
Zeroless analog of tribonacci numbers.
1
1, 1, 1, 3, 5, 9, 17, 31, 57, 15, 13, 85, 113, 211, 49, 373, 633, 155, 1161, 1949, 3265, 6375, 11589, 21229, 39193, 7211, 67633, 11437, 86281, 165351, 26369, 2781, 19451, 4861, 2793, 2715, 1369, 6877, 1961, 127, 8965, 1153, 1245, 11363, 13761, 26369, 51493, 91623, 169485, 31261
OFFSET
0,4
COMMENTS
At n = 208666297 this sequence enters a cycle that has a period of 300056874 and begins: 2847, 26331, 5851, ... (only the first 3 terms of the cycle are needed to reproduce the entire cycle).
This can be compared with the sequence A243063, which enters a cycle that has a (relatively) small period of 912.
FORMULA
a(n) = Zr(a(n-1) + a(n-2) + a(n-3)), where the function Zr(k) removes all zero digits from k.
EXAMPLE
a(9) = Zr(a(8) + a(7) + a(6)) = Zr(17 + 31 + 57) = Zr(105) = 15.
MATHEMATICA
a[0]=a[1]=a[2]=1; a[n_]:=FromDigits[DeleteCases[IntegerDigits[a[n-1]+a[n-2]+a[n-3]], 0]]; Array[a, 50, 0] (* Stefano Spezia, Apr 12 2024 *)
PROG
(Python)
def a(n):
a, b, c = 1, 1, 1
for _ in range(n):
a, b, c = b, c, int(str(a+b+c).replace('0', ''))
return a
(Python) # faster for initial segment of sequence
from itertools import islice
def agen(): # generator of terms
a, b, c = 1, 1, 1
while True: yield a; a, b, c = b, c, int(str(a+b+c).replace("0", ""))
print(list(islice(agen(), 50))) # Michael S. Branicky, Apr 13 2024
KEYWORD
nonn,base
AUTHOR
Bryle Morga, Apr 11 2024
STATUS
approved