login
A066176
Numbers k such that sigma(k+1) - sigma(k) = sigma(k)/d(k), where d(k) denotes the number of divisors of k.
1
135, 147, 189, 753, 2697, 8365, 14577, 16929, 18573, 21093, 38481, 67461, 69285, 99237, 100497, 108134, 144555, 148173, 186081, 253761, 263906, 302589, 536834, 560733, 680043, 1158717, 1239554, 1418121, 1431861, 1520313, 1545255, 1657077
OFFSET
1,1
COMMENTS
These are the numbers k at which the divisor sum sigma(k) is increasing at a rate equal to the average divisor size, sigma(k)/d(k).
LINKS
EXAMPLE
sigma(136) - sigma(135) = 270 - 240 = 30 = 240/8 = sigma(135)/d(135).
MATHEMATICA
Select[ Range[ 1, 10^5 ], DivisorSigma[ 1, #+1 ]-DivisorSigma[ 1, # ]==DivisorSigma[ 1, # ]/DivisorSigma[ 0, # ] & ]
PROG
(PARI) { n=0; for (m=1, 10^9, if (sigma(m + 1) - sigma(m) == sigma(m)/numdiv(m), write("b066176.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 05 2010
CROSSREFS
Sequence in context: A038369 A066282 A235809 * A025363 A296451 A096593
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Dec 14 2001
EXTENSIONS
More terms from Robert Gerbicz, Aug 21 2006
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved