login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A066282
Numbers k such that k = (product of nonzero digits of k) * (sum of digits of k).
7
0, 1, 135, 144, 1088
OFFSET
1,3
COMMENTS
Suppose a term k has d digits, then k > 10^(d-1), the product of nonzero digits <= 9^d, and the sum of digits <= 9*d. Since for d >= 85 we have 10^(d-1) > 9^d * (9*d), it follows that d <= 84. That is, the sequence is finite. I've further verified that there are no other terms, that is, the sequence is complete. - Max Alekseyev, Jul 29 2024
LINKS
René-Louis Clerc, Nombres S+P, maxSP, minSP et |P-S|, hal-04507547 [math.nt], 2024. (In French)
EXAMPLE
(1+0+8+8) * (1*8*8) = 17*64 = 1088, so 1088 belongs to the sequence.
MATHEMATICA
Do[ d = Sort[ IntegerDigits[n]]; While[ First[d] == 0, d = Drop[d, 1]]; If[n == Apply[ Plus, d] Apply[ Times, d], Print[n]], {n, 0, 5*10^7} ]
PROG
(ARIBAS) function a066282(a, b: integer); var n, k, j, p, d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; if d > 0 then p := p*d; end; end; if n = p*k then write(n, ", "); end; end; end; a066282(0, 25000).
(PARI) a066282(a, b) = local(n, k, q, p, d); for(n=a, b, k=0; p=1; q=n; while(q>0, d=divrem(q, 10); q=d[1]; k=k+d[2]; p=p*max(1, d[2])); if(n==p*k, print1(n, ", ")))
a066282(0, 25000)
CROSSREFS
Fixed points of A062331.
Sequence in context: A355002 A378104 A038369 * A235809 A066176 A025363
KEYWORD
base,fini,full,nonn
AUTHOR
Klaus Brockhaus, Dec 13 2001
EXTENSIONS
Offset corrected by Mohammed Yaseen, Jul 21 2022
Keywords fini,full added by Max Alekseyev, Jul 29 2024
STATUS
approved