OFFSET
1,3
COMMENTS
Suppose a term k has d digits, then k > 10^(d-1), the product of nonzero digits <= 9^d, and the sum of digits <= 9*d. Since for d >= 85 we have 10^(d-1) > 9^d * (9*d), it follows that d <= 84. That is, the sequence is finite. I've further verified that there are no other terms, that is, the sequence is complete. - Max Alekseyev, Jul 29 2024
LINKS
René-Louis Clerc, Nombres S+P, maxSP, minSP et |P-S|, hal-04507547 [math.nt], 2024. (In French)
EXAMPLE
(1+0+8+8) * (1*8*8) = 17*64 = 1088, so 1088 belongs to the sequence.
MATHEMATICA
Do[ d = Sort[ IntegerDigits[n]]; While[ First[d] == 0, d = Drop[d, 1]]; If[n == Apply[ Plus, d] Apply[ Times, d], Print[n]], {n, 0, 5*10^7} ]
PROG
(ARIBAS) function a066282(a, b: integer); var n, k, j, p, d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; if d > 0 then p := p*d; end; end; if n = p*k then write(n, ", "); end; end; end; a066282(0, 25000).
(PARI) a066282(a, b) = local(n, k, q, p, d); for(n=a, b, k=0; p=1; q=n; while(q>0, d=divrem(q, 10); q=d[1]; k=k+d[2]; p=p*max(1, d[2])); if(n==p*k, print1(n, ", ")))
a066282(0, 25000)
CROSSREFS
KEYWORD
base,fini,full,nonn
AUTHOR
Klaus Brockhaus, Dec 13 2001
EXTENSIONS
Offset corrected by Mohammed Yaseen, Jul 21 2022
Keywords fini,full added by Max Alekseyev, Jul 29 2024
STATUS
approved