login
A235809
Numbers k such that k^3 has one or more occurrences of exactly seven different digits.
3
135, 145, 203, 221, 223, 225, 227, 233, 243, 244, 245, 247, 249, 254, 257, 265, 272, 273, 275, 276, 299, 313, 327, 329, 334, 338, 341, 345, 347, 352, 365, 366, 368, 382, 384, 388, 393, 395, 398, 403, 405, 409, 411, 412, 434, 439, 447, 452, 455, 473, 486, 493
OFFSET
1,1
LINKS
EXAMPLE
135 is in the sequence because 135^3 = 2460375, which contains exactly seven different digits.
MATHEMATICA
Select[Range[500], Length[Union[IntegerDigits[#^3]]]==7&] (* Vincenzo Librandi, Nov 07 2014 *)
PROG
(PARI) s=[]; for(n=1, 600, if(#vecsort(eval(Vec(Str(n^3))), , 8)==7, s=concat(s, n))); s
(Magma) [n: n in [0..1200] | #Set(Intseq(n^3)) eq 7]; // Vincenzo Librandi, Nov 07 2014
(PARI) for(n=0, 10^3, if(#Set(digits(n^3))==7, print1(n, ", "))); \\ Joerg Arndt, Nov 10 2014
(Python)
from itertools import count, islice
def A235809gen(): return filter(lambda n:len(set(str(n**3))) == 7, count(0))
A235809_list = list(islice(A235809gen(), 26)) # Chai Wah Wu, Dec 23 2021
KEYWORD
nonn,base
AUTHOR
Colin Barker, Jan 19 2014
STATUS
approved