OFFSET
1,12
LINKS
FORMULA
T(n, k) = coefficient of x^k in (1/2^n)*Sum_{j = 0..n} (-1)^j*2^C(j, 2)*[n, j]*(1+x^(2^j))^(2^(n-j)), where [n, j] is Gaussian 2-binomial coefficient; k = 0..2^n.
EXAMPLE
Triangle begins:
[0,1,0],
[0,1,0,1,0],
[0,1,0,7,7,7,0,1,0],
...;
T(5,k) = coefficient of x^k in (1/32)*((1+x)^32-31*(1+x^2)^16+310*(1+x^4)^8-1240*(1+x^8)^4+1984*(1+x^16)^2-1024*(1+x^32)),k = 0..32.
MATHEMATICA
T[n_, 0]:=0; T[n_, k_] := (1/2^n)*Coefficient[Sum[(-1)^j*2^(Binomial[j, 2])* QBinomial[n, j, 2]*(1 + x^(2^j))^(2^(n - j)), {j, 0, n}], x^k];
Table[T[n, k], {n, 1, 5}, {k, 0, 2^n}] // Flatten (* G. C. Greubel, Feb 15 2018 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Jul 13 2000
STATUS
approved