login
A022619
Triangle T(n,k)of numbers of asymmetric Boolean functions of n variables with exactly k = 0..2^n nonzero values (atoms) under action of complementing group C(n,2).
1
0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 7, 7, 7, 0, 1, 0, 0, 1, 0, 35, 105, 273, 448, 715, 750, 715, 448, 273, 105, 35, 0, 1, 0, 0, 1, 0, 155, 1085, 6293, 27776, 105183, 327050, 876525, 2011776, 4032015, 7048811, 10855425, 14721280, 17678835, 18771864
OFFSET
1,12
FORMULA
T(n, k) = coefficient of x^k in (1/2^n)*Sum_{j = 0..n} (-1)^j*2^C(j, 2)*[n, j]*(1+x^(2^j))^(2^(n-j)), where [n, j] is Gaussian 2-binomial coefficient; k = 0..2^n.
EXAMPLE
Triangle begins:
[0,1,0],
[0,1,0,1,0],
[0,1,0,7,7,7,0,1,0],
...;
T(5,k) = coefficient of x^k in (1/32)*((1+x)^32-31*(1+x^2)^16+310*(1+x^4)^8-1240*(1+x^8)^4+1984*(1+x^16)^2-1024*(1+x^32)),k = 0..32.
MATHEMATICA
T[n_, 0]:=0; T[n_, k_] := (1/2^n)*Coefficient[Sum[(-1)^j*2^(Binomial[j, 2])* QBinomial[n, j, 2]*(1 + x^(2^j))^(2^(n - j)), {j, 0, n}], x^k];
Table[T[n, k], {n, 1, 5}, {k, 0, 2^n}] // Flatten (* G. C. Greubel, Feb 15 2018 *)
CROSSREFS
Row sums give A051502.
Cf. A054724.
Sequence in context: A124930 A195202 A252799 * A131685 A019860 A011422
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Jul 13 2000
STATUS
approved