login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195203
E.g.f.: Sum_{n>=0} x*(n + x)^(n-1) * x^n/n!.
3
1, 0, 2, 6, 48, 440, 5310, 77952, 1356152, 27284112, 623393370, 15946253840, 451464791052, 14014830400584, 473330219980982, 17278004243854200, 677844684489863760, 28441920741699231392, 1270962028978738313778, 60259311813834246030048, 3021271708308614076699380
OFFSET
0,3
COMMENTS
a(n) is the total number of leaves in all labeled forests with n nodes. Cf. A055541. - Geoffrey Critzer, Aug 22 2012
LINKS
FORMULA
E.g.f.: exp(-x*LambertW(-x)).
E.g.f.: ( LambertW(-x)/(-x) )^x.
E.g.f.: ( Sum_{n>=0} (n + 1)^(n-1) * x^n/n! )^x.
E.g.f.: ( Sum_{n>=0} (n + x)^n * x^n/n! ) * (-x)/LambertW(-x). - Paul D. Hanna, Jun 16 2018
E.g.f.: LambertW(-x) / ( -x * Sum_{n>=0} (n - x)^n * x^n/n! ). - Paul D. Hanna, Jun 16 2018
a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k-1,k-1)*(n-k)^(n-2*k)*k!. - Alois P. Heinz, Aug 22 2012
a(n) ~ exp(exp(-1)-1)*n^(n-1). - Vaclav Kotesovec, Jun 26 2013
EXAMPLE
E.g.f.: A(x) = 1 + 2*x^2/2! + 6*x^3/3! + 48*x^4/4! + 440*x^5/5! + ...
where
A(x) = 1 + x*(1+x)^0*x^1/1! + x*(2+x)*x^2/2! + x*(3+x)^2*x^3/3! + x*(4+x)^3*x^4/4! + ...
Also, A(x) = W(x)^x where W(x) = LambertW(-x)/(-x) and begins:
W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + ...
MAPLE
a:= n-> add(binomial(n, k)*binomial(n-k-1, k-1)*(n-k)^(n-2*k) *k!, k=0..n/2):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 22 2012
MATHEMATICA
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[Exp[x t] , {x, 0, nn}], x] (* Geoffrey Critzer, Aug 22 2012 *)
PROG
(PARI) {a(n)=local(A=sum(k=0, n, x*(k+x)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(A, n)}
(PARI) {a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(W^x, n)}
(PARI) {a(n)=local(W=sum(k=0, n, (k+1)^(k-1)*x^k/k!)+x*O(x^n)); n!*polcoeff(exp(x^2*W), n)}
CROSSREFS
Sequence in context: A228159 A249786 A292934 * A365285 A052743 A052587
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2011
STATUS
approved