login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195200
G.f. satisfies: A(x) = A(x^2)^3 + x*A(x^2)^2.
1
1, 1, 3, 2, 12, 7, 25, 10, 84, 37, 162, 50, 444, 140, 753, 160, 1983, 510, 3224, 570, 7890, 1591, 11886, 1572, 28770, 4889, 41844, 4680, 97524, 13356, 133621, 11440, 311973, 36616, 413907, 30490, 948118, 91823, 1195800, 69230, 2766384, 233122, 3384334, 170916, 7760430
OFFSET
0,3
LINKS
FORMULA
A series quadrisection of A(x) is 2*x^3*A(x^4)^5.
Series bisections of A(x)^2 are:
. (A(x)^2 + A(-x)^2)/2 = A(x^2)^6 + x^2*A(x^2)^4 and
. (A(x)^2 - A(-x)^2)/2 = 2*x*A(x^2)^5.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 2*x^3 + 12*x^4 + 7*x^5 + 25*x^6 +...
Related expansions begin:
A(x)^2 = 1 + 2*x + 7*x^2 + 10*x^3 + 37*x^4 + 50*x^5 + 140*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 25*x^3 + 84*x^4 + 162*x^5 + 444*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 48*x^3 + 163*x^4 + 388*x^5 + 1098*x^6 +..
A(x)^5 = 1 + 5*x + 25*x^2 + 80*x^3 + 285*x^4 + 786*x^5 + 2340*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 122*x^3 + 462*x^4 + 1428*x^5 + 4501*x^6 +...
The series bisections of A(x)^2 begin:
. A(x^2)^6 + x^2*A(x^2)^4 = 1 + 7*x^2 + 37*x^4 + 140*x^6 + 510*x^8 + 1591*x^10 +...
. 2*x*A(x^2)^5 = 2*x + 10*x^3 + 50*x^5 + 160*x^7 + 570*x^9 + 1572*x^11 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, 21, A=subst(A, x, x^2+x*O(x^n))^3+x*subst(A, x, x^2+x*O(x^n))^2); polcoeff(A, n)}
CROSSREFS
Cf. A174512.
Sequence in context: A122407 A346122 A232752 * A098646 A129925 A267011
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 12 2011
STATUS
approved