login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174512
G.f. satisfies: A(x) = A(x^2)^2 + x*A(x^2)^3.
3
1, 1, 2, 3, 5, 9, 10, 22, 20, 51, 40, 114, 67, 230, 130, 474, 203, 891, 380, 1725, 575, 3108, 1032, 5718, 1524, 9986, 2600, 17568, 3874, 30048, 6290, 50988, 9420, 85647, 14450, 140796, 22195, 233095, 32260, 373536, 50656, 609804, 69464, 956368
OFFSET
0,3
LINKS
FORMULA
A series quadrisection of A(x) equals 2*x^2*A(x^4)^5.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 10*x^6 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 40*x^5 + 67*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 114*x^5 + 230*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 260*x^5 + 594*x^6 +..
A(x)^5 = 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 516*x^5 + 1300*x^6 +...
A(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 930*x^5 + 2546*x^6 +...
where the series bisections of A(x)^2 are:
[A(x)^2 - A(-x)^2]/2 = 2*x*A(x^2)^5 and
[A(x)^2 + A(-x)^2]/2 = A(x^2)^4 + x^2*A(x^2)^6.
The series bisections of A(x)^3 are:
[A(x)^3 - A(-x)^3]/2 = 3*x*A(x^2)^7 + x^3*A(x^2)^9 and
[A(x)^3 + A(-x)^3]/2 = A(x^2)^6 + 3*x^2*A(x^2)^8.
The series bisections of A(x)^4 are:
[A(x)^4 - A(-x)^4]/2 = 4*x*A(x^2)^9 + 4*x^3*A(x^2)^11 and
[A(x)^4 + A(-x)^4]/2 = A(x^2)^8 + 6*x^2*A(x^2)^10 + x^4*A(x^2)^12.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=subst(A, x, x^2+x*O(x^n))^2+x*subst(A, x, x^2+x*O(x^n))^3); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Cf. A174513.
Sequence in context: A090845 A262990 A058108 * A056144 A284626 A284847
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 20 2010
EXTENSIONS
Edited by Paul D. Hanna, Apr 22 2010
STATUS
approved