login
A174511
The number of isomorphism classes of subgroups of the symmetric group S_n.
2
1, 2, 4, 9, 16, 29, 55, 137, 241, 453, 894, 2065, 3845
OFFSET
1,2
COMMENTS
Two subgroups are considered to be isomorphic here if they are isomorphic as abstract groups, not as permutation groups. - N. J. A. Sloane, Nov 28 2010
LINKS
A. Distler and T. Kelsey, The semigroups of order 9 and their automorphism groups, arXiv preprint arXiv:1301.6023 [math.CO], 2013. - From N. J. A. Sloane, Feb 19 2013
EXAMPLE
a(3) = 4 since S_3 contains up to isomorphism exactly one subgroup of each of the orders 1,2,3,6.
PROG
(GAP)
a:=[];
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] do
G:=SymmetricGroup(n);
R:=ConjugacyClassesSubgroups(G);
RR:=ListX(R, Representative);
T:=[RR[1]];
for g in RR do
flag:=false;
for h in T do
if IsomorphismGroups(g, h)<>fail then
flag:=true;
break;
fi;
od;
if flag=false then Add(T, g); fi;
od;
Add(a, Size(T));
od;
Print(a, "\n");
CROSSREFS
Sequence in context: A000291 A081055 A034446 * A034452 A034449 A082894
KEYWORD
nonn,more
AUTHOR
W. Edwin Clark, Nov 28 2010
EXTENSIONS
a(11) and a(12) from Stephen A. Silver, Feb 24 2013
a(13) (as calculated by Jack Schmidt) from L. Edson Jeffery, May 26 2013
STATUS
approved