login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = A(x^2)^2 + x*A(x^2)^3.
3

%I #9 Oct 31 2015 14:23:01

%S 1,1,2,3,5,9,10,22,20,51,40,114,67,230,130,474,203,891,380,1725,575,

%T 3108,1032,5718,1524,9986,2600,17568,3874,30048,6290,50988,9420,85647,

%U 14450,140796,22195,233095,32260,373536,50656,609804,69464,956368

%N G.f. satisfies: A(x) = A(x^2)^2 + x*A(x^2)^3.

%H Paul D. Hanna, <a href="/A174512/b174512.txt">Table of n, a(n), n=0..8200.</a>

%F A series quadrisection of A(x) equals 2*x^2*A(x^4)^5.

%e G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 10*x^6 +...

%e A(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 40*x^5 + 67*x^6 +...

%e A(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 114*x^5 + 230*x^6 +...

%e A(x)^4 = 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 260*x^5 + 594*x^6 +..

%e A(x)^5 = 1 + 5*x + 20*x^2 + 65*x^3 + 190*x^4 + 516*x^5 + 1300*x^6 +...

%e A(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 930*x^5 + 2546*x^6 +...

%e where the series bisections of A(x)^2 are:

%e [A(x)^2 - A(-x)^2]/2 = 2*x*A(x^2)^5 and

%e [A(x)^2 + A(-x)^2]/2 = A(x^2)^4 + x^2*A(x^2)^6.

%e The series bisections of A(x)^3 are:

%e [A(x)^3 - A(-x)^3]/2 = 3*x*A(x^2)^7 + x^3*A(x^2)^9 and

%e [A(x)^3 + A(-x)^3]/2 = A(x^2)^6 + 3*x^2*A(x^2)^8.

%e The series bisections of A(x)^4 are:

%e [A(x)^4 - A(-x)^4]/2 = 4*x*A(x^2)^9 + 4*x^3*A(x^2)^11 and

%e [A(x)^4 + A(-x)^4]/2 = A(x^2)^8 + 6*x^2*A(x^2)^10 + x^4*A(x^2)^12.

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=subst(A,x,x^2+x*O(x^n))^2+x*subst(A,x,x^2+x*O(x^n))^3);polcoeff(A,n)}

%o for(n=0,50,print1(a(n),", "))

%Y Cf. A174513.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Apr 20 2010

%E Edited by _Paul D. Hanna_, Apr 22 2010