Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jun 16 2018 23:27:20
%S 1,0,2,6,48,440,5310,77952,1356152,27284112,623393370,15946253840,
%T 451464791052,14014830400584,473330219980982,17278004243854200,
%U 677844684489863760,28441920741699231392,1270962028978738313778,60259311813834246030048,3021271708308614076699380
%N E.g.f.: Sum_{n>=0} x*(n + x)^(n-1) * x^n/n!.
%C a(n) is the total number of leaves in all labeled forests with n nodes. Cf. A055541. - _Geoffrey Critzer_, Aug 22 2012
%H Alois P. Heinz, <a href="/A195203/b195203.txt">Table of n, a(n) for n = 0..150</a>
%F E.g.f.: exp(-x*LambertW(-x)).
%F E.g.f.: ( LambertW(-x)/(-x) )^x.
%F E.g.f.: ( Sum_{n>=0} (n + 1)^(n-1) * x^n/n! )^x.
%F E.g.f.: ( Sum_{n>=0} (n + x)^n * x^n/n! ) * (-x)/LambertW(-x). - _Paul D. Hanna_, Jun 16 2018
%F E.g.f.: LambertW(-x) / ( -x * Sum_{n>=0} (n - x)^n * x^n/n! ). - _Paul D. Hanna_, Jun 16 2018
%F a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k-1,k-1)*(n-k)^(n-2*k)*k!. - _Alois P. Heinz_, Aug 22 2012
%F a(n) ~ exp(exp(-1)-1)*n^(n-1). - _Vaclav Kotesovec_, Jun 26 2013
%e E.g.f.: A(x) = 1 + 2*x^2/2! + 6*x^3/3! + 48*x^4/4! + 440*x^5/5! + ...
%e where
%e A(x) = 1 + x*(1+x)^0*x^1/1! + x*(2+x)*x^2/2! + x*(3+x)^2*x^3/3! + x*(4+x)^3*x^4/4! + ...
%e Also, A(x) = W(x)^x where W(x) = LambertW(-x)/(-x) and begins:
%e W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + ...
%p a:= n-> add(binomial(n, k)*binomial(n-k-1, k-1)*(n-k)^(n-2*k) *k!, k=0..n/2):
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 22 2012
%t nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
%t Range[0, nn]! CoefficientList[Series[Exp[x t] , {x, 0, nn}], x] (* _Geoffrey Critzer_, Aug 22 2012 *)
%o (PARI) {a(n)=local(A=sum(k=0,n,x*(k+x)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(A,n)}
%o (PARI) {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(W^x,n)}
%o (PARI) {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(exp(x^2*W),n)}
%K nonn
%O 0,3
%A _Paul D. Hanna_, Sep 13 2011