|
|
A131683
|
|
a(n) = 4*(n^1 + 1!)*(n^2 + 2!)*(n^3 + 3!)*(n^4 + 4!)/4!.
|
|
2
|
|
|
48, 175, 1680, 25410, 294000, 2295513, 12991440, 57550100, 211281840, 669529875, 1885734928, 4823347830, 11387316720, 25126129245, 52326450000, 103659864168, 196585724720, 358766207415, 632810010000, 1082730294250, 1802581066608, 2927824829985, 4650083620560
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
|
|
FORMULA
|
G.f.: -(80*x^9 +7205*x^8 +61625*x^7 +213873*x^6 +217437*x^5 +93855*x^4 +8635*x^3 +2395*x^2 -353*x +48) / (x -1)^11. - Colin Barker, Aug 08 2013
a(0)=48, a(1)=175, a(2)=1680, a(3)=25410, a(4)=294000, a(5)=2295513, a(6)=12991440, a(7)=57550100, a(8)=211281840, a(9)=669529875, a(10)=1885734928, a(n)=11*a(n-1)- 55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)- 165*a(n-8)+ 55*a(n-9)- 11*a(n-10)+a(n-11). - Harvey P. Dale, Mar 23 2015
|
|
MATHEMATICA
|
Table[((n+1)(n^2+2)(n^3+6)(n^4+24))/6, {n, 0, 30}] (* or *) LinearRecurrence[ {11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {48, 175, 1680, 25410, 294000, 2295513, 12991440, 57550100, 211281840, 669529875, 1885734928}, 30] (* Harvey P. Dale, Mar 23 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|