login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233682
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 6 (6 maximizes T(1,1))
9
48, 184, 184, 648, 928, 648, 2440, 4448, 4448, 2440, 8712, 23568, 28544, 23568, 8712, 32456, 117744, 216592, 216592, 117744, 32456, 116872, 621904, 1500800, 2442208, 1500800, 621904, 116872, 432456, 3145968, 11482368, 25036784, 25036784
OFFSET
1,1
COMMENTS
Table starts
......48.......184.........648..........2440............8712.............32456
.....184.......928........4448.........23568..........117744............621904
.....648......4448.......28544........216592.........1500800..........11482368
....2440.....23568......216592.......2442208........25036784.........289389648
....8712....117744.....1500800......25036784.......365293440........6336415296
...32456....621904....11482368.....289389648......6336415296......169016684160
..116872...3145968....81243904....3057995568.....95799636288.....3879764059776
..432456..16510480...617735680...35239626640...1660462199232...103768584198400
.1565704..84078896..4416166400..377551693872..25500227965248..2432577744933760
.5768392.439062352.33345630720.4321333099024.438642994287168.64581965636210432
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +12*a(n-2) -4*a(n-3) -16*a(n-4)
k=2: [order 10]
k=3: [order 17]
k=4: [order 45]
k=5: [order 99]
EXAMPLE
Some solutions for n=3 k=4
..0..2..0..2..0....1..1..1..2..1....0..1..3..1..0....0..0..0..2..3
..0..1..0..1..0....0..2..0..2..3....0..2..2..2..2....1..2..1..2..1
..2..1..2..1..2....0..1..1..2..1....0..1..0..1..3....0..2..3..2..0
..2..3..3..1..3....2..2..3..2..3....0..2..2..2..2....0..1..3..1..1
CROSSREFS
Sequence in context: A244178 A131683 A066134 * A233675 A005911 A130566
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 14 2013
STATUS
approved