OFFSET
0,1
COMMENTS
Quoting Steven Finch: "The slopes of the 'critical parallelogram' are (1+sqrt(5))/2 [phi] and (1-sqrt(5))/2 [-1/phi]."
Let W_n be the collection of all binary words of length n that do not contain two consecutive 0's. Let r_n be the ratio of the total number of 1's in W_n divided by the total number of letters in W_n. Then lim_{n->infinity} r_n = 0.723606... Equivalently, lim_{n->oo} A004798(n)/(n*A000045(n+2)) = 0.723606... - Geoffrey Critzer, Feb 04 2022
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.23, p. 176.
FORMULA
Equals (1 + 1/sqrt(5))/2.
Equals 1/A094874. - Michel Marcus, Dec 01 2018
From Amiram Eldar, Feb 11 2022: (Start)
Equals phi/sqrt(5), where phi is the golden ratio (A001622).
Equals lim_{k->oo} Fibonacci(k+1)/Lucas(k). (End)
EXAMPLE
k2 = 0.723606797749978969640917366873127623544...
MATHEMATICA
RealDigits[(1+1/Sqrt[5])/2, 10, 100] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, May 20 2014
STATUS
approved