login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242668
Expansion of 1/(1 - 8*x + 16*x^2 + x^4 - 4*x^5).
1
1, 8, 48, 256, 1279, 6132, 28576, 130432, 585985, 2599952, 11419808, 49743104, 215163647, 925163500, 3957669648, 16854677312, 71498512897, 302248757272, 1273756836176, 5353050574336, 22440215412223, 93856659402724, 391745066819136, 1631995960879872
OFFSET
0,2
COMMENTS
Subsequence of A047538.
a(n) is divisible by 4^(n mod 4).
REFERENCES
C. Mariconda and A. Tonolo, Calcolo discreto, Apogeo (2012), 229-230 (example 9.43).
FORMULA
G.f.: 1/((1 - 4*x)*(1 - 4*x + x^4)).
a(n) = 8*a(n-1) - 16*a(n-2) - a(n-4) + 4*a(n-5) for n>4.
a(n) = 4*a(n-1) - a(n-4) + 4^n for n>3 (see References, p. 229).
Trisections:
a(3k): 1, 256, 28576, 2599952, 215163647, 16854677312, 1273756836176, ... has g.f. (1+128*x-48*x^2+4*x^3)/((1-64*x)*(1-64*x+48*x^2-12*x^3+x^4));
a(3k+1): 8, 1279, 130432, 11419808, 925163500, 71498512897, ... has g.f. (8+255*x-128*x^2+16*x^3)/((1-64*x)*(1-64*x+48*x^2-12*x^3+x^4));
a(3k+2): 48, 6132, 585985, 49743104, 3957669648, 302248757272, ... has g.f. (48-12*x+x^2)/((1-64*x)*(1-64*x+48*x^2-12*x^3+x^4)).
a(n) ~ 4^(4+n). - Stefano Spezia, Mar 29 2023
MATHEMATICA
CoefficientList[Series[1/((1 - 4 x) (1 - 4 x + x^4)), {x, 0, 30}], x]
LinearRecurrence[{8, -16, 0, -1, 4}, {1, 8, 48, 256, 1279}, 40] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI) Vec(1/(1-8*x+16*x^2+x^4-4*x^5)+O(x^30))
(Maxima) makelist(coeff(taylor(1/(1-8*x+16*x^2+x^4-4*x^5), x, 0, n), x, n), n, 0, 30);
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-8*x+16*x^2+x^4-4*x^5)));
(Sage) m = 30; L.<x> = PowerSeriesRing(ZZ, m); f = 1/(1-8*x+16*x^2+x^4-4*x^5); print(f.coefficients())
CROSSREFS
Cf. A047538.
Sequence in context: A225977 A305782 A292536 * A002697 A285063 A026761
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 20 2014
STATUS
approved