OFFSET
1,3
COMMENTS
Starting (1, 4, 7, ...) = partial sums of (1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, ...). - Gary W. Adamson, Jun 19 2008
The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4 etc. - Bruno Berselli, Nov 28 2012
Nonnegative m such that floor(k*(m/4)^2) = k*floor((m/4)^2), where k can assume the values from 4 to 15. See also the second comment in A047513. - Bruno Berselli, Dec 03 2015
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
FORMULA
From Paul Barry, Oct 27 2004: (Start)
G.f.: x^2*(1+x)^2 / ((1+x^2)*(1-2*x+x^2)).
E.g.f.: 2*x*exp(x)-sin(x).
a(n) = 2*n-2-sin(Pi*(n-1)/2).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4. (End)
a(n) = 2*n-2-(1+(-1)^n)*(-1)^((2*n-3)/4-(-1)^n/4)/2. - Wesley Ivan Hurt, Sep 22 2015
a(n) = (-4+(-i)^n+i^n+4*n)/2, where i = sqrt(-1). - Colin Barker, Oct 18 2015
Sum_{n>=2} (-1)^n/a(n) = (6-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
MAPLE
MATHEMATICA
Table[2n-2-Sin[Pi*(n-1)/2], {n, 80}] (* Wesley Ivan Hurt, Sep 22 2015 *)
Select[Range[0, 150], MemberQ[{0, 1, 4, 7}, Mod[#, 8]] &] (* Vincenzo Librandi, Sep 23 2015 *)
LinearRecurrence[{2, -2, 2, -1}, {0, 1, 4, 7}, 100] (* Harvey P. Dale, Aug 12 2016 *)
PROG
(Sage) [lucas_number1(n, 0, 1)+2*n-4 for n in (2..57)] # Zerinvary Lajos, Jul 06 2008
(Magma) [2*n-2-(1+(-1)^n)*(-1)^((2*n-3) div 4-(-1)^n div 4) / 2 : n in [1..80]]; // Wesley Ivan Hurt, Sep 22 2015
(Magma) [n: n in [0..150] | n mod 8 in {0, 1, 4, 7}]; // Vincenzo Librandi, Sep 23 2015
(PARI) a(n) = (-4+(-I)^n+I^n+4*n)/2 \\ Colin Barker, Oct 18 2015
(PARI) concat(0, Vec(x^2*(1+x)^2/((1+x^2)*(1-2*x+x^2)) + O(x^100))) \\ Colin Barker, Oct 18 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Wesley Ivan Hurt, Sep 22 2015
G.f. adapted to offset by Colin Barker, Oct 18 2015
STATUS
approved