OFFSET
1,1
COMMENTS
One can notice that, for real values of x, sin((gamma(3/4)^2/sqrt(Pi))*x) is extremely close to sn(x,1/2) (though different).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.4.6 Elliptic Functions, p. 24.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
Eric Weisstein's MathWorld, Elliptic Integral of the First Kind
Eric Weisstein's MathWorld, Jacobi Elliptic Functions
Jean-François Alcover, Compare sin(x) with sn(x,1/2)
FORMULA
8*EllipticK(-1/3)/sqrt(3), where EllipticK is the complete elliptic integral of the first kind.
Also equals (4*Pi/sqrt(3))*2F1(1/2, 1/2; 1; -1/3), where 2F1 is the hypergeometric function.
Also equals 4*EllipticK(1/4). - Jan Mangaldan, Jan 06 2017
EXAMPLE
6.7430014192503841714848146311963079580032035765643561764797931915737348...
MAPLE
Re(evalf(8*EllipticK(I/sqrt(3))/sqrt(3), 120)); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
RealDigits[8*EllipticK[-1/3]/Sqrt[3], 10, 103] // First
RealDigits[4 EllipticK[1/4], 10, 103] // First (* Jan Mangaldan, Jan 06 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jul 10 2014
STATUS
approved