Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Apr 06 2017 02:28:22
%S 6,7,4,3,0,0,1,4,1,9,2,5,0,3,8,4,1,7,1,4,8,4,8,1,4,6,3,1,1,9,6,3,0,7,
%T 9,5,8,0,0,3,2,0,3,5,7,6,5,6,4,3,5,6,1,7,6,4,7,9,7,9,3,1,9,1,5,7,3,7,
%U 3,4,8,1,1,5,2,9,3,8,7,0,4,1,6,2,5,8,0,3,8,9,5,7,4,6,4,5,0,2,8,1,3,3,9
%N Decimal expansion of the (real) period of the elliptic function sn(x,1/2).
%C One can notice that, for real values of x, sin((gamma(3/4)^2/sqrt(Pi))*x) is extremely close to sn(x,1/2) (though different).
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.4.6 Elliptic Functions, p. 24.
%H G. C. Greubel, <a href="/A242670/b242670.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/EllipticIntegraloftheFirstKind.html">Elliptic Integral of the First Kind</a>
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/JacobiEllipticFunctions.html">Jacobi Elliptic Functions</a>
%H Jean-François Alcover, <a href="/A242670/a242670.gif">Compare sin(x) with sn(x,1/2)</a>
%F 8*EllipticK(-1/3)/sqrt(3), where EllipticK is the complete elliptic integral of the first kind.
%F Also equals (4*Pi/sqrt(3))*2F1(1/2, 1/2; 1; -1/3), where 2F1 is the hypergeometric function.
%F Also equals 4*EllipticK(1/4). - _Jan Mangaldan_, Jan 06 2017
%e 6.7430014192503841714848146311963079580032035765643561764797931915737348...
%p Re(evalf(8*EllipticK(I/sqrt(3))/sqrt(3), 120)); # _Vaclav Kotesovec_, Apr 22 2015
%t RealDigits[8*EllipticK[-1/3]/Sqrt[3], 10, 103] // First
%t RealDigits[4 EllipticK[1/4], 10, 103] // First (* _Jan Mangaldan_, Jan 06 2017 *)
%K nonn,cons,easy
%O 1,1
%A _Jean-François Alcover_, Jul 10 2014