login
A196761
Decimal expansion of the least x>0 satisfying 3=x*sin(x).
4
6, 7, 4, 4, 1, 6, 8, 3, 5, 3, 2, 5, 9, 1, 4, 8, 5, 5, 5, 8, 5, 5, 2, 8, 1, 1, 7, 3, 0, 1, 5, 3, 2, 5, 9, 4, 4, 0, 2, 6, 8, 7, 9, 9, 7, 1, 4, 1, 3, 4, 0, 7, 9, 1, 2, 9, 6, 2, 3, 6, 7, 5, 1, 2, 6, 6, 8, 7, 8, 6, 9, 0, 0, 1, 9, 5, 5, 7, 3, 4, 1, 7, 3, 9, 0, 9, 4, 6, 9, 1, 2, 7, 1, 6, 1, 6, 5, 4, 7, 8, 9, 6
OFFSET
1,1
EXAMPLE
x=6.7441683532591485558552811730153259440268799...
MATHEMATICA
Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196760 *)
t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196761 *)
t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196762 *)
t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196763 *)
t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A196764 *)
CROSSREFS
Cf. A196765.
Sequence in context: A367312 A195792 A242670 * A362769 A195776 A092678
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved