login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210975 Decimal expansion of square root of (Pi/6). 1
7, 2, 3, 6, 0, 1, 2, 5, 4, 5, 5, 8, 2, 6, 7, 6, 5, 9, 3, 6, 3, 0, 1, 4, 6, 2, 7, 2, 9, 0, 7, 9, 5, 7, 6, 7, 8, 7, 2, 1, 0, 8, 8, 9, 4, 7, 8, 4, 5, 4, 5, 9, 2, 6, 9, 7, 6, 2, 1, 2, 3, 2, 7, 7, 7, 0, 3, 6, 8, 2, 0, 5, 2, 8, 6, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Edge of a cube with surface area Pi.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

I. S. Gradsteyn, I. M. Ryzhik, Table of integrals, series and products, (1980), page 420 (formulas 3.757.1, 3.757.2).

Index entries for transcendental numbers

FORMULA

Equals (Pi/6)^(1/2).

Equals sqrt(A019673).

From A.H.M. Smeets, Sep 22 2018: (Start)

Equals Integral_{x >= 0} sin(3x)/sqrt(x) dx [Gradshteyn and Ryzhik].

Equals Integral_{x >= 0} cos(3x)/sqrt(x) dx [Gradshteyn and Ryzhik]. (End)

EXAMPLE

0.723601254558267659363...

MAPLE

sqrt(Pi/6) ; evalf(%) ; # R. J. Mathar, Sep 14 2012

MATHEMATICA

RealDigits[Sqrt[Pi/6], 10, 50][[1]] (* G. C. Greubel, May 31 2017 *)

PROG

(PARI) sqrt(Pi/6) \\ Charles R Greathouse IV, Apr 16 2014

CROSSREFS

Cf. A019673.

Sequence in context: A155751 A092234 A160101 * A242671 A065476 A019945

Adjacent sequences: A210972 A210973 A210974 * A210976 A210977 A210978

KEYWORD

nonn,cons

AUTHOR

Omar E. Pol, Aug 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 09:53 EST 2022. Contains 358585 sequences. (Running on oeis4.)