|
|
A094874
|
|
Decimal expansion of (5-sqrt(5))/2.
|
|
13
|
|
|
1, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also the limiting ratio of Lucas(n)/Fibonacci(n+1), or Fibonacci(n-1)/Fibonacci(n+1) + 1. - Alexander Adamchuk, Oct 10 2007
|
|
LINKS
|
Ivan Panchenko, Table of n, a(n) for n = 1..1000
Paul Cooijmans, Odds.
Yiyan Ni, Myron Hlynka, Percy H. Brill, Urn Models and Fibonacci Series, arXiv:1806.09150 [math.CO], 2018. See (9) p. 7.
J. Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, arXiv:1106.4246 [math.NT], 2011; Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, vol. 1385, pp. 97-100.
|
|
FORMULA
|
(2-phi)*(2+phi) = 2 - 1/phi = 3 - phi = (5-sqrt(5))/2 = (2*sin(Pi/5))^2, where phi is the golden ratio (A001622).
Equals Product_{n > 0} (1 + 1/A192223(n)). - Charles R Greathouse IV, Jun 26 2011
Equals Product_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018
Equals Sum_{k>=0} binomial(2*k,k)/((k+1) * 5^k). - Amiram Eldar, Aug 03 2020
|
|
EXAMPLE
|
1.38196601125010515179541316563436188...
|
|
MATHEMATICA
|
RealDigits[5/2 - Sqrt[5]/2, 10, 100][[1]] (* Alonso del Arte, Jun 26 2018 *)
|
|
PROG
|
(PARI) (5-sqrt(5))/2 \\ Charles R Greathouse IV, Jun 26 2011
|
|
CROSSREFS
|
Equals A079585-1.
Cf. A000032, A000045, A192223.
Sequence in context: A131563 A016622 A143623 * A132338 A132702 A197725
Adjacent sequences: A094871 A094872 A094873 * A094875 A094876 A094877
|
|
KEYWORD
|
cons,nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Jun 14 2004
|
|
STATUS
|
approved
|
|
|
|