OFFSET
1,2
COMMENTS
Also the limiting ratio of Lucas(n)/Fibonacci(n+1), or Fibonacci(n-1)/Fibonacci(n+1) + 1. - Alexander Adamchuk, Oct 10 2007
LINKS
Ivan Panchenko, Table of n, a(n) for n = 1..1000
Paul Cooijmans, Odds.
Yiyan Ni, Myron Hlynka, and Percy H. Brill, Urn Models and Fibonacci Series, arXiv:1806.09150 [math.CO], 2018. See (9) p. 7.
J. Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, arXiv:1106.4246 [math.NT], 2011; Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, vol. 1385, pp. 97-100.
FORMULA
(2-phi)*(2+phi) = 2 - 1/phi = 3 - phi = (5-sqrt(5))/2 = (2*sin(Pi/5))^2, where phi is the golden ratio (A001622).
Equals Product_{n > 0} (1 + 1/A192223(n)). - Charles R Greathouse IV, Jun 26 2011
Equals 1 + Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018; corrected by Michel Marcus, Mar 11 2024
Equals Sum_{k>=0} binomial(2*k,k)/((k+1) * 5^k). - Amiram Eldar, Aug 03 2020
EXAMPLE
1.38196601125010515179541316563436188...
MATHEMATICA
RealDigits[5/2 - Sqrt[5]/2, 10, 100][[1]] (* Alonso del Arte, Jun 26 2018 *)
PROG
(PARI) (5-sqrt(5))/2 \\ Charles R Greathouse IV, Jun 26 2011
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jun 14 2004
STATUS
approved