login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081008
a(n) = Fibonacci(4n+2) - 1, or Fibonacci(2n)*Lucas(2n+2).
2
0, 7, 54, 376, 2583, 17710, 121392, 832039, 5702886, 39088168, 267914295, 1836311902, 12586269024, 86267571271, 591286729878, 4052739537880, 27777890035287, 190392490709134, 1304969544928656, 8944394323791463, 61305790721611590, 420196140727489672
OFFSET
0,2
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(7-2*x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
MAPLE
with(combinat) for n from 0 to 30 do printf(`%d, `, fibonacci(4*n+2)-1) od # James A. Sellers, Mar 03 2003
MATHEMATICA
Fibonacci[4Range[25]-2]-1 (* or *)
LinearRecurrence[{8, -8, 1}, {0, 7, 54}, 25] (* Paolo Xausa, Jan 08 2024 *)
PROG
(Magma) [Fibonacci(4*n+2)-1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
(PARI) vector(30, n, n--; fibonacci(4*n+2)-1) \\ G. C. Greubel, Jul 14 2019
(Sage) [fibonacci(4*n+2)-1 for n in (0..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([0..30], n-> Fibonacci(4*n+2)-1); # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Sequence in context: A116202 A203289 A204258 * A116472 A015562 A243670
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved