login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(4n+2) - 1, or Fibonacci(2n)*Lucas(2n+2).
2

%I #31 Jan 08 2024 07:08:20

%S 0,7,54,376,2583,17710,121392,832039,5702886,39088168,267914295,

%T 1836311902,12586269024,86267571271,591286729878,4052739537880,

%U 27777890035287,190392490709134,1304969544928656,8944394323791463,61305790721611590,420196140727489672

%N a(n) = Fibonacci(4n+2) - 1, or Fibonacci(2n)*Lucas(2n+2).

%D Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

%H Nathaniel Johnston, <a href="/A081008/b081008.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).

%F a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).

%F G.f.: x*(7-2*x)/((1-x)*(1-7*x+x^2)). - _Colin Barker_, Jun 24 2012

%p with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+2)-1) od # _James A. Sellers_, Mar 03 2003

%t Fibonacci[4Range[25]-2]-1 (* or *)

%t LinearRecurrence[{8,-8,1},{0,7,54},25] (* _Paolo Xausa_, Jan 08 2024 *)

%o (Magma) [Fibonacci(4*n+2)-1: n in [0..30]]; // _Vincenzo Librandi_, Apr 15 2011

%o (PARI) vector(30, n, n--; fibonacci(4*n+2)-1) \\ _G. C. Greubel_, Jul 14 2019

%o (Sage) [fibonacci(4*n+2)-1 for n in (0..30)] # _G. C. Greubel_, Jul 14 2019

%o (GAP) List([0..30], n-> Fibonacci(4*n+2)-1); # _G. C. Greubel_, Jul 14 2019

%Y Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

%K nonn,easy

%O 0,2

%A _R. K. Guy_, Mar 01 2003

%E More terms from _James A. Sellers_, Mar 03 2003