login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081006
a(n) = Fibonacci(4n) - 1, or Fibonacci(2n+1)*Lucas(2n-1).
2
2, 20, 143, 986, 6764, 46367, 317810, 2178308, 14930351, 102334154, 701408732, 4807526975, 32951280098, 225851433716, 1548008755919, 10610209857722, 72723460248140, 498454011879263, 3416454622906706, 23416728348467684, 160500643816367087
OFFSET
1,1
COMMENTS
Apart from the offset, the same as A003481. - R. J. Mathar, Sep 18 2008
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(2+4*x-x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
MAPLE
with(combinat) for n from 0 to 30 do printf(`%d, `, fibonacci(4*n)-1) od # James A. Sellers, Mar 03 2003
MATHEMATICA
Fibonacci[4*Range[30]]-1 (* or *) LinearRecurrence[{8, -8, 1}, {2, 20, 143}, 30] (* Harvey P. Dale, Mar 19 2018 *)
PROG
(Magma) [Fibonacci(4*n)-1: n in [1..30]]; // Vincenzo Librandi, Apr 15 2011
(PARI) vector(30, n, fibonacci(4*n)-1) \\ G. C. Greubel, Jul 15 2019
(Sage) [fibonacci(4*n)-1 for n in (1..30)] # G. C. Greubel, Jul 15 2019
(GAP) List([1..30], n-> Fibonacci(4*n)-1); # G. C. Greubel, Jul 15 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Sequence in context: A279112 A229454 A003490 * A003481 A000183 A198052
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved