login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081004
a(n) = Fibonacci(4n+2) + 1, or Fibonacci(2n+2)*Lucas(2n).
1
2, 9, 56, 378, 2585, 17712, 121394, 832041, 5702888, 39088170, 267914297, 1836311904, 12586269026, 86267571273, 591286729880, 4052739537882, 27777890035289, 190392490709136, 1304969544928658, 8944394323791465, 61305790721611592, 420196140727489674
OFFSET
0,1
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = A033890(n)+1.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (2-7*x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
MAPLE
with(combinat): for n from 0 to 30 do printf(`%d, `, fibonacci(4*n+2)+1) od: # James A. Sellers, Mar 03 2003
MATHEMATICA
Table[Fibonacci[4n+2] +1, {n, 0, 30}] (* Wesley Ivan Hurt, Nov 20 2014 *)
PROG
(Magma) [Fibonacci(4*n+2)+1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
(PARI) vector(30, n, n--; fibonacci(4*n+2)+1) \\ G. C. Greubel, Jul 15 2019
(Sage) [fibonacci(4*n+2)+1 for n in (0..30)] # G. C. Greubel, Jul 15 2019
(GAP) List([0..30], n-> Fibonacci(4*n+2)+1); # G. C. Greubel, Jul 15 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A056854 (first differences).
Sequence in context: A240562 A091108 A179405 * A198953 A212392 A186262
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved