login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332049 a(n) = (1/2) * Sum_{d|n, d > 1} d * phi(d). 3
0, 1, 3, 5, 10, 10, 21, 21, 30, 31, 55, 38, 78, 64, 73, 85, 136, 91, 171, 115, 150, 166, 253, 150, 260, 235, 273, 236, 406, 220, 465, 341, 388, 409, 451, 335, 666, 514, 549, 451, 820, 451, 903, 610, 640, 760, 1081, 598, 1050, 781, 955, 863, 1378, 820, 1165 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Sum of numerators of the reduced fractions 1/n, ..., (n-1)/n. Note that if n is a prime p this is p*(p-1)/2 as all fractions are already reduced. For 1/n, ..., n/n, see A057661.

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

G.f.: (1/2) * Sum_{k>=2} phi(k^2) * x^k / (1 - x^k).

a(n) = Sum_{k=1..n-1} k / gcd(n,k).

a(n) = (sigma_2(n^2) - sigma_1(n^2)) / (2 * sigma_1(n^2)).

a(n) = Sum_{d|n, d > 1} A023896(d).

a(n) = A057661(n) - 1 = (A057660(n) - 1) / 2.

EXAMPLE

For n = 5, fractions are 1/5, 2/5, 3/5, 4/5, sum of numerators is 10.

For n = 8, fractions are 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, sum of numerators is 21.

MAPLE

N:= 100: # for a(1)..a(N)

V:= Vector(N):

for d from 2 to N do

  v:= d*numtheory:-phi(d)/2;

  R:= [seq(i, i=d..N, d)];

  V[R]:= V[R] +~ v

od:

convert(V, list); # Robert Israel, Feb 07 2020

MATHEMATICA

Table[(1/2) Sum[If[d > 1, d EulerPhi[d], 0], {d, Divisors[n]}], {n, 1, 55}]

nmax = 55; CoefficientList[Series[(1/2) Sum[EulerPhi[k^2] x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest

Table[Sum[k/GCD[n, k], {k, 1, n - 1}], {n, 1, 55}]

Table[(DivisorSigma[2, n^2] - DivisorSigma[1, n^2])/(2 DivisorSigma[1, n^2]), {n, 1, 55}]

PROG

(MAGMA) [0] cat [(1/2)*&+[ d*EulerPhi(d):d in Set(Divisors(n)) diff {1}]:n in [2..60]]; // Marius A. Burtea, Feb 07 2020

(PARI) a(n) = sumdiv(n, d, if (d>1, d*eulerphi(d)))/2; \\ Michel Marcus, Feb 07 2020

(HASKELL)

toNums a = fmap (numerator . (% a))

toNumList a = toNums a [1..(a-1)]

sumList = sum . toNumList <$> [2..200]

CROSSREFS

Cf. A000010, A002618, A006579, A023896, A057660, A057661.

Sequence in context: A345892 A342424 A335003 * A113858 A101130 A191513

Adjacent sequences:  A332046 A332047 A332048 * A332050 A332051 A332052

KEYWORD

nonn,look

AUTHOR

Ilya Gutkovskiy, Feb 06 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 05:47 EDT 2022. Contains 355087 sequences. (Running on oeis4.)