login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332051
Number of compositions of 2n where the multiplicity of the first part equals n.
4
1, 1, 3, 4, 15, 36, 126, 372, 1239, 3910, 12848, 41581, 136578, 447188, 1473342, 4855704, 16053831, 53138244, 176233968, 585202262, 1945964080, 6478043121, 21588979877, 72016891509, 240452892570, 803489258286, 2686964354376, 8991840800137, 30110638705890
OFFSET
0,3
LINKS
FORMULA
a(n) = A331332(2n,n).
a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.40869819984215108586487649733361214893... is the root of the equation 4 - 32*d - 8*d^2 + 5*d^3 = 0, and c = 0.34930509632919368540449993196290415079... is the root of the equation 5 - 4*c^2 - 592*c^4 + 2368*c^6 = 0. - Vaclav Kotesovec, Feb 08 2020
Recurrence: 5*(n-1)*n*(2294*n^5 - 31267*n^4 + 168064*n^3 - 445121*n^2 + 580494*n - 297864)*a(n) = (n-1)*(29822*n^6 - 415647*n^5 + 2327634*n^4 - 6668807*n^3 + 10238782*n^2 - 7910608*n + 2368800)*a(n-1) + 2*(27528*n^7 - 434848*n^6 + 2851985*n^5 - 10024036*n^4 + 20278349*n^3 - 23438626*n^2 + 14189888*n - 3420000)*a(n-2) - 2*(41292*n^7 - 647684*n^6 + 4218357*n^5 - 14743832*n^4 + 29759871*n^3 - 34533464*n^2 + 21199620*n - 5259600)*a(n-3) + 2*(n-4)*(2*n - 7)*(2294*n^5 - 19797*n^4 + 65936*n^3 - 105591*n^2 + 80846*n - 23400)*a(n-4). - Vaclav Kotesovec, Feb 08 2020
EXAMPLE
a(0) = 1: the empty composition.
a(1) = 1: 2.
a(2) = 3: 22, 112, 121.
a(3) = 4: 222, 1113, 1131, 1311.
a(4) = 15: 2222, 11114, 11141, 11411, 14111, 111122, 111212, 111221, 112112, 112121, 112211, 121112, 121121, 121211, 122111.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, x, add(expand(
`if`(i=j, x, 1)*b(n-j, `if`(n<i+j, 0, i))), j=1..n))
end:
a:= n-> `if`(n=0, 1, coeff(add(b(2*n-j, j), j=1..2*n), x, n)):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, x, Sum[Expand[If[i == j, x, 1] b[n - j, If[n < i + j, 0, i]]], {j, 1, n}]];
a[n_] := If[n == 0, 1, Coefficient[Sum[b[2 n - j, j], {j, 1, 2 n}], x, n]];
a /@ Range[0, 35] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 06 2020
STATUS
approved