login
A372342
Number of noncrossing partitions of [n] that contain exactly one singleton.
1
0, 1, 0, 3, 4, 15, 36, 105, 288, 819, 2320, 6633, 19020, 54769, 158172, 458055, 1329552, 3867075, 11267856, 32884953, 96111900, 281267469, 824083260, 2417052267, 7096175856, 20852160525, 61324675776, 180488550375, 531581605828, 1566658748079, 4620016882740, 13632008884201, 40244583972480
OFFSET
0,4
COMMENTS
Similar to A005043 and linked to A363448.
LINKS
Julien Rouyer and A. Ninet, Two New Integer Sequences Related to Crossroads and Catalan Numbers, hal-04281025, 2023. See also arXiv:2311.07181 [math.CO], 2023.
FORMULA
a(n) = Sum_{m=1..floor((n+1)/2)} binomial(n, m-1)*binomial(n-m-1, m-2) for n != 1.
a(n) = n*A005043(n-1) for n>=1. - Ira M. Gessel, Jun 25 2024
EXAMPLE
For n=3 the a(3)=3 partitions with exactly one singleton are {{12},{3}}, {{13},{2}}, and {{1},{23}}.
MAPLE
a:= proc(n) option remember; `if`(n<2, n,
2*(n-2)*a(n-1)/(n-1)+3*a(n-2))
end:
seq(a(n), n=0..32); # Alois P. Heinz, Jun 25 2024
MATHEMATICA
a[n_]:=Sum[Binomial[n, m-1]*Binomial[n-m-1, m-2], {m, Floor[(n+1)/2]}]; Array[a, 30, 0] (* Stefano Spezia, Apr 28 2024 *)
a[n_] := (-1)^(1 - n) n Hypergeometric2F1[1 - n, 1/2, 2, 4];
Table[a[n], {n, 0, 32}] (* Peter Luschny, Jun 25 2024 *)
PROG
(SageMath)
seq = [0, 1]
for n in range(2, 20):
up = (n+1) // 2
s = 0
for m in range(1, up+1):
s += binomial(n, m-1) * binomial(n-m-1, m-2)
seq.append(s)
CROSSREFS
Sequence in context: A055486 A041665 A052133 * A332051 A209479 A209338
KEYWORD
nonn,easy
AUTHOR
Julien Rouyer, Apr 28 2024
STATUS
approved