login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372345
Square array A(n, k), n, k >= 0, read by upwards antidiagonals; for any n, k >= 0 with respective binary expansions Sum_{i >= 0} b_i * 2^i and Sum_{i >= 0} c_i * 2^i, A(n, k) = Sum_{i >= 0} (b_{i+1} * c_i + b_i * c_{i+1}) * 3^i.
2
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 3, 2, 3, 0, 0, 0, 1, 4, 3, 3, 4, 1, 0, 0, 1, 3, 4, 0, 4, 3, 1, 0, 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 0, 0, 0, 5, 3, 0, 3, 5, 0, 0, 0, 0, 1, 1, 0, 3, 4, 4, 3, 0, 1, 1, 0, 0, 1, 0, 1, 9, 4, 6, 4, 9, 1, 0, 1, 0
OFFSET
0,24
COMMENTS
The digits in the ternary expansion of A(n, k) correspond to permanents of 2 X 2 matrices made up of binary digits of n and k.
FORMULA
A(k, n) = A(n, k).
EXAMPLE
Array A(n, k) begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10
----+--------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 0
1 | 0 0 1 1 0 0 1 1 0 0 1
2 | 0 1 0 1 3 4 3 4 0 1 0
3 | 0 1 1 2 3 4 4 5 0 1 1
4 | 0 0 3 3 0 0 3 3 9 9 12
5 | 0 0 4 4 0 0 4 4 9 9 13
6 | 0 1 3 4 3 4 6 7 9 10 12
7 | 0 1 4 5 3 4 7 8 9 10 13
8 | 0 0 0 0 9 9 9 9 0 0 0
9 | 0 0 1 1 9 9 10 10 0 0 1
10 | 0 1 0 1 12 13 12 13 0 1 0
PROG
(PARI) A(n, k) = { my (v = 0, t = 1); while (n && k, v += (bittest(n, 1)*bittest(k, 0) + bittest(n, 0)*bittest(k, 1)) * t; n \= 2; k \= 2; t *= 3; ); return (v); }
CROSSREFS
See A372344 for a similar sequence.
Sequence in context: A108032 A053370 A016458 * A058513 A319650 A285736
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Apr 28 2024
STATUS
approved