login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372347
a(n) = Sum_{j=0..n} p(n - j, j) where p(n, x) = Sum_{k=0..n} k! * Stirling1(n, k) * x^k.
1
1, 1, 2, 4, 12, 52, 334, 2866, 31902, 439510, 7372150, 147351714, 3460114654, 94073798158, 2926942982790, 103161703653178, 4084845678671086, 180433041383154870, 8836346732709839206, 477142911818397135058, 28265453383985064929934
OFFSET
0,3
MAPLE
p := n -> local k; add(k!*Stirling1(n, k)*x^k, k = 0..n):
a := n -> local j; add(subs(x=j, p(n - j)), j = 0..n):
seq(a(n), n = 0..21);
CROSSREFS
Cf. A225479.
Sequence in context: A058767 A075876 A222470 * A227037 A158569 A020106
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 28 2024
STATUS
approved