The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A332047 Numbers that are not distended, but all sums of subsets of divisors are distinct. 1
 175, 442, 575, 638, 782, 806, 874, 875, 986, 1178, 1209, 1334, 1394, 1426, 1462, 1479, 1573, 1598, 1615, 1634, 1702, 1767, 1786, 1833, 1886, 2001, 2014, 2091, 2125, 2146, 2193, 2255, 2261, 2294, 2303, 2378, 2387, 2431, 2438, 2451, 2542, 2553, 2585, 2597, 2666, 2679, 2714, 2717, 2726, 2755, 2806 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..4100 Mathematics StackExchange, Are the "distended" numbers precisely the numbers for which no two subsets of their divisors have the same sum? EXAMPLE a(3) = 575 has divisors 1, 5, 23, 25, 115, 575. It is not distended because 1+5+23 >= 25, but the sums of all 2^6 subsets of divisors are distinct, so 575 is in the sequence. MAPLE filter:= proc(n) local d, sd, S, T, v; d:= sort(convert(numtheory:-divisors(n), list)); sd:= ListTools:-PartialSums(d); if min(d[2..-1]-sd[1..-2])> 0 then return false fi; S:= {}; T:= combinat:-subsets(d); while not T[finished] do v:= convert(T[nextvalue](), `+`); if member(v, S) then return false fi; S:= S union {v}; od; true end proc: select(filter, [\$1..3000]); CROSSREFS Cf A051772. Sequence in context: A351720 A015806 A109836 * A186211 A205748 A352109 Adjacent sequences: A332044 A332045 A332046 * A332048 A332049 A332050 KEYWORD nonn AUTHOR Robert Israel, Feb 06 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 04:28 EST 2024. Contains 370309 sequences. (Running on oeis4.)