OFFSET
1,2
COMMENTS
Let 1 = d_1 < d_2 < ... < d_k = n be the k distinct divisors of n. Then n is said to be distended if and only if d_1+d_2+...+d_m < d_(m+1) for all 0 < m < k.
By definition, all distended numbers are deficient (A005100). For this, it suffices to consider the case for m = k-1, then the sum of divisors = d_1+d_2+...+d_(k-1) < d_(m+1) = d_k = n. - Jaycob Coleman, Michel Marcus, Oct 24 2013
If n is distended and defined as above, then 2^r(d_(m-r)+d_(m-r-1)+...+d_1) < d_(m+1) for all 0 < m < k and 0 <= r < m, which for r = 0 is the definition above. When r = m-1 the inequality reduces to 2^(m-1) < d_(m+1) for all 0 < m < k. In particular, 2^k < 4n. - Jaycob Coleman, Oct 29 2013
Contains A000961. - Robert Israel, Dec 20 2015
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..10000
MAPLE
filter:= proc(n) local F, L;
F:= sort(convert(numtheory:-divisors(n), list));
L:= ListTools:-PartialSums(F);
max(L[1..-2] - F[2..-1]) < 0;
end proc:
select(filter, [$1..1000]); # Robert Israel, Dec 20 2015
MATHEMATICA
Select[Range[93], Min[Rest[d = Divisors[#]] - Most[Accumulate[d]]] > 0 &] (* Ivan Neretin, Dec 19 2015 *)
PROG
(PARI) isok(n) = {d = divisors(n); k = #d; for (m = 1, k-1, if (sum(j = 1, m, d[j]) >= d[m+1], return (0)); ); return (1); } \\ Michel Marcus, Sep 04 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Benjamin Schwartz (QBOB(AT)aol.com), Dec 08 1999
STATUS
approved