login
A051774
Contracted numbers.
3
6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 126, 130, 132, 135, 138, 140, 144, 150, 154, 156, 160, 162, 165, 168, 170, 174, 175, 176, 180, 182, 186
OFFSET
1,1
COMMENTS
n is said to be contracted if and only if n has distinct divisors d_1 < d_2 < ... < d_k such that d_1+d_2+...+d_(k-1) >= d_k. Note that d_k need not be the greatest divisor of n -- see the examples.
LINKS
EXAMPLE
6 has divisors 1, 2, 3, 6, and 1+2 >= 3, so 6 is a member. 45 has divisors 1, 3, 5, 9, 15, 45, and 1+3+5+9 = 18 > 15, so 45 is a member. - N. J. A. Sloane, Jun 12 2021
MATHEMATICA
cnQ[n_]:=Module[{d=Divisors[n], len}, len=Length[d]; AnyTrue[Table[Take[ d, k], {k, 3, len}], Total[Most[#]]>=Last[#]&]]; Select[Range[200], cnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 12 2021 *)
CROSSREFS
Numbers not in A051772.
Sequence in context: A105289 A328608 A328671 * A119357 A097216 A346695
KEYWORD
nonn
AUTHOR
Alexander Benjamin Schwartz (QBOB(AT)aol.com), Dec 08 1999
STATUS
approved