|
|
A171857
|
|
Number of n-step up-side self-avoiding walks on the lattice strip {0,1,2} x Z (up-side means that the walks move up and sideways but not down).
|
|
1
|
|
|
1, 2, 4, 8, 15, 28, 53, 101, 192, 364, 690, 1309, 2484, 4713, 8941, 16962, 32180, 61052, 115827, 219744, 416893, 790921, 1500520, 2846756, 5400806, 10246297, 19439064, 36879393, 69966825, 132739618, 251830868, 477768336, 906412247, 1719626644
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 + z^2 + z^3)/(1 - 2z + z^2 - z^3 - z^4).
|
|
EXAMPLE
|
a(3)=8 because we have UUU, UUR, URU, RUU, RUL, RRU, RUR, and URR, where U, L, and R denote up, left, and right steps, respectively.
|
|
MAPLE
|
g := (1+z^2+z^3)/(1-2*z+z^2-z^3-z^4): gser := series(g, z = 0, 43): seq(coeff(gser, z, n), n = 0 .. 35);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|