login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275670
G.f. A(x,y) satisfies: A(x,y) = x*y + A(x,x*y)^2, with A(0,y) = 1.
5
1, 0, 1, 0, 2, 0, 4, 0, 8, 1, 0, 16, 4, 0, 32, 14, 0, 64, 40, 0, 128, 108, 2, 0, 256, 272, 12, 0, 512, 664, 52, 0, 1024, 1568, 188, 0, 2048, 3632, 608, 1, 0, 4096, 8256, 1816, 12, 0, 8192, 18528, 5128, 76, 0, 16384, 41088, 13856, 360, 0, 32768, 90304, 36176, 1446, 0, 65536, 196864, 91856, 5192, 4, 0, 131072, 426368, 227968, 17192, 42, 0, 262144, 918016, 555040, 53504, 284, 0, 524288, 1966848, 1329696, 158588, 1496, 0, 1048576, 4195328, 3141632, 451824, 6704, 0, 2097152, 8914432, 7334208, 1245936, 26772, 6
OFFSET
0,5
COMMENTS
Compare g.f. to G(x,y) = x*y + G(x*y,y)^2 with G(0,y) = 0, which generates triangle A138157.
Apparently, the g.f. of column n equals y^n*x^A033156(n) * P(n,x)/Q(n,x), where:
Q(n,x) = Product_{k=1..n} (1 - 2*x^k)^floor(n/k),
and P(n,x) is of degree A024916(n) - A033156(n).
FORMULA
G.f. A(x,y) satisfies: 1 = ...(((((A(x,y) - x*y)^(1/2) - x^2*y)^(1/2) - x^3*y)^(1/2) - x^4*y)^(1/2) - x^5*y)^(1/2) -...- x^n*y)^(1/2) -..., an infinite series of nested square roots.
EXAMPLE
G.f.: A(x,y) = 1 + y*x + 2*y*x^2 + 4*y*x^3 + (y^2 + 8*y)*x^4 + (4*y^2 + 16*y)*x^5 + (14*y^2 + 32*y)*x^6 + (40*y^2 + 64*y)*x^7 + (2*y^3 + 108*y^2 + 128*y)*x^8 + (12*y^3 + 272*y^2 + 256*y)*x^9 + (52*y^3 + 664*y^2 + 512*y)*x^10 + (188*y^3 + 1568*y^2 + 1024*y)*x^11 + (y^4 + 608*y^3 + 3632*y^2 + 2048*y)*x^12 +...
such that A(x,y) = x*y + A(x,x*y)^2, with A(0,y) = 1; further,
A(x,y) = x*y + ( x^2*y + A(x,x^2*y)^2 )^2,
A(x,y) = x*y + ( x^2*y + ( x^3*y + A(x,x^3*y)^2 )^2 )^2, etc.
This table of coefficients in g.f. A(x,y) begins:
1;
0, 1;
0, 2;
0, 4;
0, 8, 1;
0, 16, 4;
0, 32, 14;
0, 64, 40;
0, 128, 108, 2;
0, 256, 272, 12;
0, 512, 664, 52;
0, 1024, 1568, 188;
0, 2048, 3632, 608, 1;
0, 4096, 8256, 1816, 12;
0, 8192, 18528, 5128, 76;
0, 16384, 41088, 13856, 360;
0, 32768, 90304, 36176, 1446;
0, 65536, 196864, 91856, 5192, 4;
0, 131072, 426368, 227968, 17192, 42;
0, 262144, 918016, 555040, 53504, 284;
0, 524288, 1966848, 1329696, 158588, 1496;
0, 1048576, 4195328, 3141632, 451824, 6704;
0, 2097152, 8914432, 7334208, 1245936, 26772, 6;
0, 4194304, 18876416, 16943680, 3342784, 98060, 80;
0, 8388608, 39848960, 38785536, 8761720, 335704, 636;
0, 16777216, 83890176, 88063616, 22508448, 1088496, 3844;
0, 33554432, 176166912, 198506624, 56822624, 3375096, 19492;
0, 67108864, 369106944, 444562432, 141270272, 10080760, 87184, 4;
0, 134217728, 771764224, 989807872, 346507120, 29167000, 354628, 80;
0, 268435456, 1610629120, 2192154880, 839762496, 82113648, 1338376, 812;
0, 536870912, 3355467776, 4831741952, 2013427136, 225746384, 4753320, 5916;
0, 1073741824, 6979354624, 10603063808, 4781027584, 607828752, 16052296, 35000;
0, 2147483648, 14495563776, 23174734336, 11254280416, 1606760304, 51954808, 178904, 1; ...
Row polynomials begin:
n=0: 1;
n=1: y;
n=2: 2*y;
n=3: 4*y;
n=4: 8*y + y^2;
n=5: 16*y + 4*y^2;
n=6: 32*y + 14*y^2;
n=7: 64*y + 40*y^2;
n=8: 128*y + 108*y^2 + 2*y^3;
n=9: 256*y + 272*y^2 + 12*y^3;
n=10: 512*y + 664*y^2 + 52*y^3;
n=11: 1024*y + 1568*y^2 + 188*y^3;
n=12: 2048*y + 3632*y^2 + 608*y^3 + y^4;
n=13: 4096*y + 8256*y^2 + 1816*y^3 + 12*y^4;
n=14: 8192*y + 18528*y^2 + 5128*y^3 + 76*y^4;
n=15: 16384*y + 41088*y^2 + 13856*y^3 + 360*y^4;
n=16: 32768*y + 90304*y^2 + 36176*y^3 + 1446*y^4;
n=17: 65536*y + 196864*y^2 + 91856*y^3 + 5192*y^4 + 4*y^5; ...
the first row in which y^m appears is given by n = A033156(m), where A033156 begins:
[1, 4, 8, 12, 17, 22, 27, 32, 38, 44, 50, 56, 62, 68, 74, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 200, ...].
Generating functions of initial columns.
G.f. of column 0: 1
G.f. of column 1: y*x/(1-2*x).
G.f. of column 2: y^2*x^4/((1-2*x)^2*(1-2*x^2)).
G.f. of column 3: y^3*2*x^8/((1-2*x)^3*(1-2*x^2)*(1-2*x^3)).
G.f. of column 4: y^4*x^12*(1 + 4*x - 10*x^3)/((1-2*x)^4*(1-2*x^2)^2*(1-2*x^3)*(1-2*x^4)).
G.f. of column 5: y^5*x^17*(4 + 2*x + 8*x^2 - 28*x^4)/((1-2*x)^5*(1-2*x^2)^2*(1-2*x^3)*(1-2*x^4)*(1-2*x^5)).
G.f. of column 6: y^6*x^22*(6 + 8*x - 20*x^3 - 24*x^4 - 36*x^5 - 56*x^6 + 16*x^7 + 176*x^8 + 224*x^9 - 336*x^11)/((1-2*x)^6*(1-2*x^2)^3*(1-2*x^3)^2*(1-2*x^4)*(1-2*x^5)*(1-2*x^6)).
G.f. of column 7: y^7*x^27*(4 + 24*x + 4*x^2 - 12*x^3 - 72*x^5 - 112*x^6 - 96*x^7 + 112*x^8 - 64*x^9 + 64*x^10 + 496*x^11 + 576*x^12 - 1056*x^14) / ((1-2*x)^7*(1-2*x^2)^3*(1-2*x^3)^2*(1-2*x^4)*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)).
G.f. of column 8: y^8*x^32*(1 + 24*x + 36*x^2 - 4*x^3 - 88*x^4 - 202*x^5 - 14*x^6 - 82*x^7 - 168*x^8 + 400*x^9 + 440*x^10 + 892*x^11 + 1292*x^12 - 660*x^13 - 800*x^14 - 688*x^15 - 1776*x^16 - 1136*x^17 - 4504*x^18 - 2672*x^19 + 4672*x^20 + 5664*x^21 + 12672*x^22 - 13728*x^24) / ((1-2*x)^8*(1-2*x^2)^4*(1-2*x^3)^2*(1-2*x^4)^2*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)).
G.f. of column 9: y^9*x^38*(8 + 60*x + 72*x^2 + 16*x^3 - 238*x^4 - 584*x^5 - 232*x^6 + 172*x^7 + 328*x^8 + 52*x^9 + 1012*x^10 + 2636*x^11 + 1464*x^12 + 520*x^13 - 2040*x^14 - 664*x^15 - 2360*x^16 - 8712*x^17 - 13008*x^18 - 3696*x^19 + 12080*x^20 + 15392*x^21 + 1456*x^22 - 11040*x^23 + 18112*x^24 + 37728*x^25 + 47040*x^26 - 34304*x^27 - 78144*x^28 - 73216*x^29 + 91520*x^31) / ((1-2*x)^9*(1-2*x^2)^4*(1-2*x^3)^3*(1-2*x^4)^2*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)*(1-2*x^9)).
G.f. of column 10: y^10*x^44*(28 + 96*x + 198*x^2 - 160*x^3 - 864*x^4 - 596*x^5 - 856*x^6 - 384*x^7 + 3652*x^8 + 4752*x^9 + 696*x^10 - 2972*x^11 + 3928*x^12 + 4848*x^13 - 8360*x^14 - 18768*x^15 - 11000*x^16 - 14184*x^17 - 9896*x^18 + 17184*x^19 + 23664*x^20 + 7904*x^21 + 34480*x^22 + 53472*x^23 + 54160*x^24 + 68160*x^25 + 10560*x^26 - 166208*x^27 - 203488*x^28 - 86720*x^29 - 23552*x^30 + 13632*x^31 + 67584*x^32 - 95232*x^33 - 232256*x^34 + 129536*x^35 + 677632*x^36 + 624000*x^37 + 355840*x^38 - 67584*x^39 - 988416*x^40 - 1464320*x^41 + 1244672*x^43) / ((1-2*x)^10*(1-2*x^2)^5*(1-2*x^3)^3*(1-2*x^4)^2*(1-2*x^5)^2*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)*(1-2*x^9)*(1-2*x^10)).
...
The g.f. of column n, y^n * x^A033156(n) * P(n,x)/Q(n,x), appears to have the following denominator:
Q(n,x) = Product_{k=1..n} (1 - 2*x^k)^floor(n/k), with
P(n,x) being a polynomial of degree A024916(n) - A033156(n),
where A024916(n) = Sum_{k=1..n} k*floor(n/k).
...
PROG
(PARI) /* Print first N rows of this triangle: */ N=32;
{a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^2 + y*x^(n+1-k)); polcoeff(A, n)}
{for(n=0, N, for(k=0, n, if(k==0, print1(polcoeff(a(n)+y*O(y^n), k, y)", "), if(polcoeff(a(n)+y*O(y^n), k, y)==0, break, print1(polcoeff(a(n)+y*O(y^n), k, y), ", ")))); print(""))}
CROSSREFS
Cf. A274965 (row sums), A275691 (antidiagonal sums), A033156.
Cf. variant: A138157.
Sequence in context: A131575 A077957 A077966 * A021102 A021053 A182443
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Aug 04 2016
STATUS
approved