login
A021053
Decimal expansion of 1/49.
1
0, 2, 0, 4, 0, 8, 1, 6, 3, 2, 6, 5, 3, 0, 6, 1, 2, 2, 4, 4, 8, 9, 7, 9, 5, 9, 1, 8, 3, 6, 7, 3, 4, 6, 9, 3, 8, 7, 7, 5, 5, 1, 0, 2, 0, 4, 0, 8, 1, 6, 3, 2, 6, 5, 3, 0, 6, 1, 2, 2, 4, 4, 8, 9, 7, 9, 5, 9, 1, 8, 3, 6, 7, 3, 4, 6, 9, 3, 8, 7, 7, 5, 5, 1, 0, 2, 0, 4, 0, 8, 1, 6, 3, 2, 6, 5, 3, 0, 6
OFFSET
0,2
COMMENTS
The 42-digit cycle 1,0,2,0,4,0,8,1,6,3,2,6,5,3,0,6,1,2,2,4,4,8,9,7,9,5,9,1,8,3,6,7,3,4,6,9,3,8,7,7,5,5 in this sequence and the others based on forty-ninths, gives the successive digits of the smallest integer which is multiplied by 5 when the final digit is moved from the right hand end to the left hand end. - Ian Duff, Jan 09 2009
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 78.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
FORMULA
From Chai Wah Wu, Jul 13 2016: (Start)
a(n) = a(n-1) - a(n-21) + a(n-22) for n > 21.
G.f.: x*(x^20 + 4*x^19 + 2*x^17 + x^15 - 5*x^14 + 6*x^13 - 3*x^12 - 2*x^11 - x^10 + 4*x^9 - x^8 - 3*x^7 + 5*x^6 - 7*x^5 + 8*x^4 - 4*x^3 + 4*x^2 - 2*x + 2)/(1 - x + x^21 - x^22). (End)
EXAMPLE
0.020408163265306122448979591836...
MATHEMATICA
PadLeft[First@ #, Length@ First@ # + Abs@ Last@ #] &@ RealDigits[N[1/49, 120]] (* Michael De Vlieger, Jul 13 2016 *)
PROG
(PARI) 1/49. \\ Altug Alkan, Jul 13 2016
CROSSREFS
Sequence in context: A077966 A275670 A021102 * A182443 A128983 A265833
KEYWORD
nonn,cons
AUTHOR
STATUS
approved