login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.
12

%I #12 Oct 01 2019 07:16:37

%S 0,1,0,3,0,0,6,3,0,0,10,15,1,0,0,15,45,20,0,0,0,21,105,120,15,0,0,0,

%T 28,210,455,210,6,0,0,0,36,378,1330,1365,252,1,0,0,0,45,630,3276,5985,

%U 3003,210,0,0,0,0,55,990,7140,20475,20349,5005,120,0,0,0,0,66,1485,14190,58905,98280,54264,6435,45,0,0,0,0

%N Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.

%C Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other.

%C Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

%H Robert A. Russell, <a href="/A325006/b325006.txt">Table of n, a(n) for n = 1..325</a>

%H Robin Chapman, answer to <a href="https://math.stackexchange.com/q/5732/">Coloring the faces of a hypercube</a>, Math StackExchange, September 30, 2010.

%F A(n,k) = binomial(binomial(k,2),n).

%F A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j).

%F A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k).

%F G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1).

%F Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).

%F G.f. for column k: (1+x)^binomial(k,2) - 1.

%e Array begins with A(1,1):

%e 0 1 3 6 10 15 21 28 36 45 55 ...

%e 0 0 3 15 45 105 210 378 630 990 1485 ...

%e 0 0 1 20 120 455 1330 3276 7140 14190 26235 ...

%e 0 0 0 15 210 1365 5985 20475 58905 148995 341055 ...

%e 0 0 0 6 252 3003 20349 98280 376992 1221759 3478761 ...

%e 0 0 0 1 210 5005 54264 376740 1947792 8145060 28989675 ...

%e 0 0 0 0 120 6435 116280 1184040 8347680 45379620 202927725 ...

%e 0 0 0 0 45 6435 203490 3108105 30260340 215553195 1217566350 ...

%e 0 0 0 0 10 5005 293930 6906900 94143280 886163135 6358402050 ...

%e 0 0 0 0 1 3003 352716 13123110 254186856 3190187286 29248649430 ...

%e For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors.

%t Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten

%o (PARI) a(n, k) = binomial(binomial(k, 2), n)

%o array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))

%o /* Print initial 10 rows and 11 columns of array as follows: */

%o array(10, 11) \\ _Felix Fröhlich_, May 30 2019

%Y Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors)

%Y Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex)

%Y Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1)

%K nonn,tabl,easy

%O 1,4

%A _Robert A. Russell_, May 27 2019