login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A331356 Number of chiral pairs of colorings of the edges of a regular 4-dimensional orthoplex with n available colors. 11
0, 40927, 731279799, 732272925320, 155180061396500, 12338466190481025, 498892380429882397, 12297640855782563904, 207723543409061974215, 2604156223742219218875, 25650287482426463967550, 207022761847763612943192 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. The chiral colorings of its edges come in pairs, each the reflection of the other. Also the number of chiral pairs of colorings of the square faces of a tesseract {4,3,3} with n available colors.

LINKS

Table of n, a(n) for n=1..12.

FORMULA

a(n) = (48*n^3 - 20*n^6 - 60*n^7 + 8*n^8 + 12*n^9 - 3*n^12 + 12*n^13 + 18*n^14 - 12*n^15 - 4*n^18 + n^24) / 384.

a(n) = 40927*C(n,2) + 731157018*C(n,3) + 729348051686*C(n,4) + 151526009158620*C(n,5) + 11418355290999750*C(n,6) + 415756294427389020*C(n,7) + 8643340000393019040*C(n,8) + 113987930725267657695*C(n,9) + 1022999668724320645050*C(n,10) + 6559258733377155798300*C(n,11) + 31097930936416379343000*C(n,12) + 111710735118080165667600*C(n,13) + 309231158315533166512800*C(n,14) + 666846639586795403736000*C(n,15) + 1126625894182469352672000*C(n,16) + 1492173540716221595232000*C(n,17) + 1541987121926231652672000*C(n,18) + 1229356526029003532160000*C(n,19) + 741102367008078915840000*C(n,20) + 326583680209195368960000*C(n,21) + 99234043419574103040000*C(n,22) + 18581137031073576960000*C(n,23) + 1615751046180311040000*C(n,24), where the coefficient of C(n,k) is the number of colorings using exactly k colors.

a(n) = A331354(n) - A331355(n) = (A331354(n) - A331357(n)) / 2 = A331355(n) - A331357(n).

MATHEMATICA

Table[(48n^3 - 20n^6 - 60n^7 + 8n^8 + 12n^9 - 3n^12 + 12n^13 + 18n^14 - 12n^15 - 4n^18 + n^24)/384, {n, 1, 25}]

CROSSREFS

Cf. A331354 (oriented), A331355 (unoriented), A331357 (achiral).

Other polychora: A331352 (5-cell), A331360 (8-cell), A338954 (24-cell), A338966 (120-cell, 600-cell).

Row 4 of A337413 (orthoplex edges, orthotope ridges) and A337889 (orthotope faces, orthoplex peaks).

Sequence in context: A212080 A097479 A337889 * A249527 A133863 A033532

Adjacent sequences:  A331353 A331354 A331355 * A331357 A331358 A331359

KEYWORD

nonn,easy

AUTHOR

Robert A. Russell, Jan 14 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 23:07 EDT 2022. Contains 353779 sequences. (Running on oeis4.)