Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 08 2024 12:03:38
%S 0,40927,731279799,732272925320,155180061396500,12338466190481025,
%T 498892380429882397,12297640855782563904,207723543409061974215,
%U 2604156223742219218875,25650287482426463967550,207022761847763612943192
%N Number of chiral pairs of colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
%C A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. The chiral colorings of its edges come in pairs, each the reflection of the other. Also the number of chiral pairs of colorings of the square faces of a tesseract {4,3,3} with n available colors.
%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
%F a(n) = (48*n^3 - 20*n^6 - 60*n^7 + 8*n^8 + 12*n^9 - 3*n^12 + 12*n^13 + 18*n^14 - 12*n^15 - 4*n^18 + n^24) / 384.
%F a(n) = 40927*C(n,2) + 731157018*C(n,3) + 729348051686*C(n,4) + 151526009158620*C(n,5) + 11418355290999750*C(n,6) + 415756294427389020*C(n,7) + 8643340000393019040*C(n,8) + 113987930725267657695*C(n,9) + 1022999668724320645050*C(n,10) + 6559258733377155798300*C(n,11) + 31097930936416379343000*C(n,12) + 111710735118080165667600*C(n,13) + 309231158315533166512800*C(n,14) + 666846639586795403736000*C(n,15) + 1126625894182469352672000*C(n,16) + 1492173540716221595232000*C(n,17) + 1541987121926231652672000*C(n,18) + 1229356526029003532160000*C(n,19) + 741102367008078915840000*C(n,20) + 326583680209195368960000*C(n,21) + 99234043419574103040000*C(n,22) + 18581137031073576960000*C(n,23) + 1615751046180311040000*C(n,24), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
%F a(n) = A331354(n) - A331355(n) = (A331354(n) - A331357(n)) / 2 = A331355(n) - A331357(n).
%t Table[(48n^3 - 20n^6 - 60n^7 + 8n^8 + 12n^9 - 3n^12 + 12n^13 + 18n^14 - 12n^15 - 4n^18 + n^24)/384, {n, 1, 25}]
%Y Cf. A331354 (oriented), A331355 (unoriented), A331357 (achiral).
%Y Other polychora: A331352 (5-cell), A331360 (8-cell), A338954 (24-cell), A338966 (120-cell, 600-cell).
%Y Row 4 of A337413 (orthoplex edges, orthotope ridges) and A337889 (orthotope faces, orthoplex peaks).
%K nonn,easy
%O 1,2
%A _Robert A. Russell_, Jan 14 2020