login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331354
Number of oriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
11
1, 90054, 1471640157, 1466049174160, 310441584462375, 24679078461920106, 997818989210621704, 24595659246351652992, 415450226822646218895, 5208333343963621522750, 51300691059764724112161, 414046079318115654521904
OFFSET
1,2
COMMENTS
A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two. Also the number of oriented colorings of the square faces of a tesseract {4,3,3} with n available colors.
There are 192 elements in the rotation group of the 4-dimensional orthoplex. Each is associated with a partition of 4 based on the conjugacy group of the permutation of the axes. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Even Cycle Indices
4 6 8x_8^3
31 8 4x_3^8 + 4x_6^4
22 3 4x_1^4x_2^10 + 4x_4^6
211 6 4x_1^2x_2^11 + 2x_1^4x_4^5 + 2x_2^2x_4^5
1111 1 6x_1^4x_2^10 + x_1^24 + x_2^12
LINKS
Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
FORMULA
a(n) = (48*n^3 + 32*n^4 + 12*n^6 + 12*n^7 + 32*n^8 + 12*n^9 + n^12 + 24*n^13 + 18*n^14 + n^24) / 192.
a(n) = C(n,1) + 90052*C(n,2) + 1471369998*C(n,3) + 1460163153852*C(n,4) + 303126054092610*C(n,5) + 22838390261305920*C(n,6) + 831533453035309605*(n,7) + 17286839341903413240*C(n,8) + 227976665667323280750*C(n,9) + 2046002146009161624900*C(n,10) + 13118524448411114548200*C(n,11) + 62195874413179579657200*C(n,12) + 223421486565003375448800*C(n,13) + 618462331903782130564800*C(n,14) + 1333693289177381452320000*C(n,15) + 2253251792722109699520000*C(n,16) + 2984347082566196867520000*C(n,17) + 3083974243985846090880000*C(n,18) + 2458713052058007064320000*C(n,19) + 1482204734016157831680000*C(n,20) + 653167360418390737920000*C(n,21) + 198468086839148206080000*C(n,22) + 37162274062147153920000*C(n,23) + 3231502092360622080000*C(n,24), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A331355(n) + A331356(n) = 2*A331355(n) - A331357(n) = 2*A331356(n) + A331357(n).
MATHEMATICA
Table[(48n^3 + 32n^4 + 12n^6 + 12n^7 + 32n^8 + 12n^9 + n^12 + 24n^13 + 18n^14 + n^24)/192, {n, 1, 25}]
CROSSREFS
Cf. A331355 (unoriented), A331356 (chiral), A331357 (achiral).
Other polychora: A331350 (5-cell), A331358 (8-cell), A338952 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A337411 (orthoplex edges, orthotope ridges) and A337887 (orthotope faces, orthoplex peaks).
Sequence in context: A353550 A359291 A236908 * A270754 A252915 A075007
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jan 14 2020
STATUS
approved