login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337411
Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
9
1, 2, 1, 3, 6, 1, 4, 24, 218, 1, 5, 70, 2285, 90054, 1, 6, 165, 703760, 1471640157, 573439556, 1, 7, 336, 10194250, 1466049174160, 6332134720430727, 50043770249328, 1, 8, 616, 90775566, 310441584462375, 629648890639384572032, 1839894096099964270283469, 59966884221697869216, 1
OFFSET
1,2
COMMENTS
Each chiral pair is counted as two when enumerating oriented arrangements. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is an octahedron with 12 edges. The number of edges is 2n*(n-1) for n>1.
Also the number of oriented colorings of the regular (n-2)-dimensional orthotopes (hypercubes) in a regular n-dimensional orthotope.
FORMULA
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337412(n,k) + A337413(n,k) = 2*A337412(n,k) - A337414(n,k) = 2*A337413(n,k) + A337414(n,k).
EXAMPLE
Table begins with T(1,1):
1 2 3 4 5 6 7 8 9 ...
1 6 24 70 165 336 616 1044 1665 ...
1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
MATHEMATICA
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]), 0]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[m]=b;
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
array[n_, k_] := row[n] /. b -> k
Table[array[n, d+m-n], {d, 8}, {n, m, d+m-1}] // Flatten
CROSSREFS
Cf. A337412 (unoriented), A337413 (chiral), A337414 (achiral).
Rows 1-4 are A000027, A006528, A060530, A331354.
Cf. A327083 (simplex edges), A337407 (orthotope edges), A325004 (orthoplex vertices).
Sequence in context: A337408 A059298 A214306 * A337407 A156914 A289656
KEYWORD
nonn,tabl
AUTHOR
Robert A. Russell, Aug 26 2020
STATUS
approved