login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156914
Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.
1
1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
OFFSET
0,3
FORMULA
T(n, k) = q-binomial(2*n, n, k+1), where q-binomial(n, k, q) = Product_{j=0..k-1} ( (1-q^(n-j))/(1-q^(j+1)) ), read by antidiagonals. - G. C. Greubel, Jun 14 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, ...;
2, 3, 4, 5, ...;
6, 35, 130, 357, ...;
20, 1395, 33880, 376805, ...;
70, 200787, 75913222, 6221613541, ...;
252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
1;
1, 2;
1, 3, 6;
1, 4, 35, 20;
1, 5, 130, 1395, 70;
1, 6, 357, 33880, 200787, 252;
1, 7, 806, 376805, 75913222, 109221651, 924;
1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
MATHEMATICA
T[n_, k_]:= QBinomial[2*n, n, k+1];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
PROG
(Magma)
QBinomial:= func< n, k, q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
T:= func< n, k | QBinomial(2*n, n, k+1) >;
[T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
(Sage)
def A156914(n, k): return q_binomial(2*n, n, k+1)
flatten([[A156914(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 18 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 14 2021
STATUS
approved