The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022168 Triangle of Gaussian binomial coefficients [ n,k ] for q = 4. 25
 1, 1, 1, 1, 5, 1, 1, 21, 21, 1, 1, 85, 357, 85, 1, 1, 341, 5797, 5797, 341, 1, 1, 1365, 93093, 376805, 93093, 1365, 1, 1, 5461, 1490853, 24208613, 24208613, 1490853, 5461, 1, 1, 21845, 23859109, 1550842085, 6221613541 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The coefficients of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^n*A157784(n,k). - R. J. Mathar, Mar 12 2013 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS T. D. Noe, Rows n=0..50 of triangle, flattened R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014. Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy) FORMULA T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017 EXAMPLE 1; 1, 1; 1, 5, 1; 1, 21, 21, 1; 1, 85, 357, 85, 1; 1, 341, 5797, 5797, 341, 1; 1, 1365, 93093, 376805, 93093, 1365, 1; 1, 5461, 1490853, 24208613, 24208613, 1490853, 5461, 1; MAPLE A022168 := proc(n, m)         A027637(n)/A027637(n-m)/A027637(m) ; end proc: # R. J. Mathar, Nov 14 2011 MATHEMATICA gaussianBinom[n_, k_, q_] := Product[q^i - 1, {i, n}]/Product[q^j - 1, {j, n - k}]/Product[q^l - 1, {l, k}]; Column[Table[gaussianBinom[n, k, 4], {n, 0, 8}, {k, 0, n}], Center] (* Alonso del Arte, Nov 14 2011 *) Table[QBinomial[n, k, 4], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 4; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *) PROG (PARI) {q=4; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 20:28 EST 2022. Contains 350661 sequences. (Running on oeis4.)