login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093564 (7,1) Pascal triangle. 13
1, 7, 1, 7, 8, 1, 7, 15, 9, 1, 7, 22, 24, 10, 1, 7, 29, 46, 34, 11, 1, 7, 36, 75, 80, 45, 12, 1, 7, 43, 111, 155, 125, 57, 13, 1, 7, 50, 154, 266, 280, 182, 70, 14, 1, 7, 57, 204, 420, 546, 462, 252, 84, 15, 1, 7, 64, 261, 624, 966, 1008, 714, 336, 99, 16, 1, 7, 71, 325, 885 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The array F(7;n,m) gives in the columns m>=1 the figurate numbers based on A016993, including the 9-gonal numbers A001106, (see the W. Lang link).

This is the seventh member, d=7, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-3, for d=1..6.

This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+6*z)/(1-(1+x)*z).

The SW-NE diagonals give A022097(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 6. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

REFERENCES

Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.

Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch. 5, pp. 109-122.

LINKS

Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened

W. Lang, First 10 rows and array of figurate numbers .

FORMULA

a(n, m)=F(7;n-m, m) for 0<= m <= n, otherwise 0, with F(7;0, 0)=1, F(7;n, 0)=7 if n>=1 and F(7;n, m):=(7*n+m)*binomial(n+m-1, m-1)/m if m>=1.

Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=7 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).

G.f. column m (without leading zeros): (1+6*x)/(1-x)^(m+1), m>=0.

T(n, k) = C(n, k) + 6*C(n-1, k). - Philippe Deléham, Aug 28 2005

exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(7 + 15*x + 9*x^2/2! + x^3/3!) = 7 + 22*x + 46*x^2/2! + 80*x^3/3! + 125*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

EXAMPLE

Triangle begins

  [1];

  [7,  1];

  [7,  8,  1];

  [7, 15,  9,  1];

  ...

MAPLE

N:= 20: # to get the first N rows

T:=Matrix(N, N):

T[1, 1]:= 1:

for m from 2 to N do

T[m, 1]:= 7:

T[m, 2..m]:= T[m-1, 1..m-1] + T[m-1, 2..m];

od:

for m from 1 to N do

convert(T[m, 1..m], list)

od; # Robert Israel, Dec 28 2014

PROG

(Haskell)

a093564 n k = a093564_tabl !! n !! k

a093564_row n = a093564_tabl !! n

a093564_tabl = [1] : iterate

               (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [7, 1]

-- Reinhard Zumkeller, Sep 01 2014

CROSSREFS

Row sums: A000079(n+2), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 6 for n=2 and 0 otherwise.

The column sequences give for m=1..9: A016993, A001106 (9-gonal), A007584, A051740, A051877, A050403, A027818, A034266, A055994.

Cf. A093565 (d=8).

Sequence in context: A210708 A210529 A151785 * A081776 A256255 A131115

Adjacent sequences:  A093561 A093562 A093563 * A093565 A093566 A093567

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Apr 22 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 16 00:25 EDT 2018. Contains 313782 sequences. (Running on oeis4.)