

A093569


For p = prime(n), the number of integers k < p1 such that p divides A001008(k), the numerator of the harmonic number H(k).


2



0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

It is wellknown that prime p >= 3 divides the numerator of H(p1). For primes p in A092194, there are integers k < p1 for which p divides the numerator of H(k). Interestingly, if p divides A001008(k) for k < p1, then p divides A001008(pk1). Hence the terms of this sequence are usually even. The only exceptions are the two known Wieferich primes 1093 and 3511, A001220, which have 3 values of k < p1 for which p divides A001008(k), one being k = (p1)/2.


LINKS

T. D. Noe, Table of n, a(n) for n=1..10000
Eric Weisstein's World of Mathematics, Harmonic Number
Eric Weisstein's World of Mathematics, Wieferich Prime


EXAMPLE

a(5) = 2 because 11 = prime(5) and there are 2 values, k = 3 and 7, such that 11 divides A001008(k).


MATHEMATICA

len=500; Table[p=Prime[i]; cnt=0; k=1; While[k<p1, If[Mod[Numerator[HarmonicNumber[k]], p]==0, cnt++ ]; k++ ]; cnt, {i, len}]


CROSSREFS

Cf. A001008, A001220, A092194.
Sequence in context: A339430 A051907 A178176 * A073091 A125250 A048113
Adjacent sequences: A093566 A093567 A093568 * A093570 A093571 A093572


KEYWORD

nonn


AUTHOR

T. D. Noe, Apr 01 2004


STATUS

approved



