login
A231653
Number of non-equivalent ways to choose 4 points in an equilateral triangle grid of side n.
4
0, 0, 4, 41, 244, 1029, 3485, 9926, 25030, 57126, 120570, 238330, 446344, 797825, 1370684, 2274259, 3660612, 5734776, 8771181, 13127940, 19270240, 27789713, 39435814, 55142010, 76066910, 103627784, 139554142, 185929971, 245260890, 320527585, 415268815
OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1).
FORMULA
a(n) = (n^8 + 4*n^7 - 6*n^6 - 32*n^5 + 84*n^4 - 32*n^3 - 16*n^2 - 192*n + B + C)/2304
where
B = 84*n^3 - 234*n^2 + 168*n + 171 if n==1 (mod 2)
= 0 otherwise
and
C = 128*n^2 + 128*n - 256) if n==1 (mod 3)
= 0 otherwise
G.f.: -x^3*(x^14 +7*x^12 +26*x^11 +146*x^10 +432*x^9 +947*x^8 +1418*x^7 +1621*x^6 +1405*x^5 +932*x^4 +438*x^3 +150*x^2 +33*x +4) / ((x -1)^9*(x +1)^4*(x^2 +x +1)^3). - Colin Barker, Feb 15 2014
EXAMPLE
For n = 3 there are the following a(3) = 4 choices of 4 points (=X) (rotations and reflections ignored):
X . X X
X X X X X X . .
. X . X . X . . X X X X
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Nov 12 2013
STATUS
approved