login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089664
a(n) = S2(n,1), where S2(n, t) = Sum_{k=0..n} k^t *(Sum_{j=0..k} binomial(n,j))^2.
10
0, 4, 41, 306, 1966, 11540, 63726, 336700, 1720364, 8562024, 41718190, 199753004, 942561636, 4392660376, 20253510956, 92519626200, 419201709976, 1885719209936, 8428262686254, 37453751742604, 165575219275700, 728534225415864, 3191850894862564
OFFSET
0,2
LINKS
Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
FORMULA
a(n) = (1/8)*(n*(3*n+5)*4^n - 2*n*(n-1)*binomial(2*n, n)). (see Wang and Zhang, p. 338)
From G. C. Greubel, May 25 2022: (Start)
a(n) = (1/2)*( n*(3*n+5)*4^(n-1) - 3*binomial(n+1, 3)*Catalan(n) ).
G.f.: x*(4*(1-x) - 3*x*sqrt(1-4*x))/(1-4*x)^3.
E.g.f.: 2*x*(2 + 3*x)*exp(4*x) - (x^2/2)*(3*BesselI(0, 2*x) + 4*BesselI(1, 2*x) + BesselI(2, 2*x))*exp(2*x)). (End)
MATHEMATICA
Table[(n*(3*n+5)*4^n -2*n*(n-1)*Binomial[2*n, n])/8, {n, 0, 40}] (* G. C. Greubel, May 25 2022 *)
PROG
(SageMath) [(1/2)*(n*(3*n+5)*4^(n-1) -3*binomial(n+1, 3)*catalan_number(n)) for n in (0..40)] # G. C. Greubel, May 25 2022
(PARI) a(n)=n*(3*n+5)*2^(2*n-3) - 3*binomial(n+1, 3)*binomial(2*n, n)/(n+1)/2 \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Sequences of S2(n, t): A003583 (t=0), this sequence (t=1), A089665 (t=2), A089666 (t=3), A089667 (t=4), A089668 (t=5).
Sequence in context: A069616 A231653 A057419 * A121671 A089454 A193368
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 04 2004
STATUS
approved