The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089662 a(n) = S1(n,5), where S1(n,t) = Sum_{k=0..n} k^t * Sum_{j=0..k} binomial(n,j). 6
0, 2, 131, 2172, 20386, 138580, 763824, 3631712, 15470144, 60527232, 221297920, 765580288, 2529498624, 8039103488, 24713744384, 73818562560, 215011065856, 612515381248, 1710842904576, 4695105732608, 12682107944960, 33768108982272, 88748191645696 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128).
FORMULA
There is an explicit formula for the sum - see Wang and Zhang, p. 334.
From Chai Wah Wu, Jun 21 2016: (Start)
a(n) = 14*a(n-1) - 84*a(n-2) + 280*a(n-3) - 560*a(n-4) + 672*a(n-5) - 448*a(n-6) + 128*a(n-7) for n > 6.
G.f.: x*(-16*x^5 + 64*x^4 + 422*x^3 + 506*x^2 + 103*x + 2)/(1 - 2*x)^7. (End)
a(n) = 2^(n-7)*n*(21*n^5 + 61*n^4 + 55*n^3 + 15*n^2 - 28*n + 4). - Ilya Gutkovskiy, Jun 21 2016
E.g.f.: (1/4)*x*(8 + 246*x + 940*x^2 + 1015*x^3 + 376*x^4 + 42*x^5)*exp(2*x). - G. C. Greubel, May 24 2022
MATHEMATICA
LinearRecurrence[{14, -84, 280, -560, 672, -448, 128}, {0, 2, 131, 2172, 20386, 138580, 763824}, 30] (* Vincenzo Librandi, Jun 22 2016 *)
PROG
(Magma) [2^(n-7)*n*(21*n^5+61*n^4+55*n^3+15*n^2-28*n+4): n in [0..30]]; // Vincenzo Librandi, Jun 22 2016
(SageMath) [2^(n-7)*n*(21*n^5 +61*n^4 +55*n^3 +15*n^2 -28*n +4) for n in (0..40)] # G. C. Greubel, May 24 2022
CROSSREFS
Sequences of S1(n,t): A001792 (t=0), A089658 (t=1), A089659 (t=2), A089660 (t=3), A089661 (t=4), this sequence (t=5), A089663 (t=6).
Sequence in context: A084549 A142251 A125633 * A119778 A071606 A080282
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 04 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 01:50 EDT 2024. Contains 372782 sequences. (Running on oeis4.)