The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089662 a(n) = S1(n,5), where S1(n,t) = Sum_{k=0..n} k^t * Sum_{j=0..k} binomial(n,j). 6
 0, 2, 131, 2172, 20386, 138580, 763824, 3631712, 15470144, 60527232, 221297920, 765580288, 2529498624, 8039103488, 24713744384, 73818562560, 215011065856, 612515381248, 1710842904576, 4695105732608, 12682107944960, 33768108982272, 88748191645696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342. Index entries for linear recurrences with constant coefficients, signature (14,-84,280,-560,672,-448,128). FORMULA There is an explicit formula for the sum - see Wang and Zhang, p. 334. From Chai Wah Wu, Jun 21 2016: (Start) a(n) = 14*a(n-1) - 84*a(n-2) + 280*a(n-3) - 560*a(n-4) + 672*a(n-5) - 448*a(n-6) + 128*a(n-7) for n > 6. G.f.: x*(-16*x^5 + 64*x^4 + 422*x^3 + 506*x^2 + 103*x + 2)/(1 - 2*x)^7. (End) a(n) = 2^(n-7)*n*(21*n^5 + 61*n^4 + 55*n^3 + 15*n^2 - 28*n + 4). - Ilya Gutkovskiy, Jun 21 2016 E.g.f.: (1/4)*x*(8 + 246*x + 940*x^2 + 1015*x^3 + 376*x^4 + 42*x^5)*exp(2*x). - G. C. Greubel, May 24 2022 MATHEMATICA LinearRecurrence[{14, -84, 280, -560, 672, -448, 128}, {0, 2, 131, 2172, 20386, 138580, 763824}, 30] (* Vincenzo Librandi, Jun 22 2016 *) PROG (Magma) [2^(n-7)*n*(21*n^5+61*n^4+55*n^3+15*n^2-28*n+4): n in [0..30]]; // Vincenzo Librandi, Jun 22 2016 (SageMath) [2^(n-7)*n*(21*n^5 +61*n^4 +55*n^3 +15*n^2 -28*n +4) for n in (0..40)] # G. C. Greubel, May 24 2022 CROSSREFS Sequences of S1(n,t): A001792 (t=0), A089658 (t=1), A089659 (t=2), A089660 (t=3), A089661 (t=4), this sequence (t=5), A089663 (t=6). Sequence in context: A084549 A142251 A125633 * A119778 A071606 A080282 Adjacent sequences: A089659 A089660 A089661 * A089663 A089664 A089665 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 04 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 01:50 EDT 2024. Contains 372782 sequences. (Running on oeis4.)