login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089658
a(n) = S1(n,1), where S1(n, t) = Sum_{k=0..n} (k^t * Sum_{j=0..k} binomial(n,j)).
15
0, 2, 11, 42, 136, 400, 1104, 2912, 7424, 18432, 44800, 107008, 251904, 585728, 1347584, 3072000, 6946816, 15597568, 34799616, 77201408, 170393600, 374341632, 818937856, 1784676352, 3875536896, 8388608000, 18102616064, 38956695552, 83617644544, 179046449152
OFFSET
0,2
LINKS
Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
FORMULA
a(n) = n*(5 + 3*n) * 2^(n-3). (See Wang and Zhang p. 333.)
From Chai Wah Wu, Jun 21 2016: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n > 2.
G.f.: x*(2 - x)/(1 - 2*x)^3. (End)
E.g.f.: x*(4 + 3*x)*exp(2*x)/2. - Ilya Gutkovskiy, Jun 21 2016
a(n) = 2*A001788(n) - A001788(n-1). - R. J. Mathar, Jul 22 2021
MATHEMATICA
LinearRecurrence[{6, -12, 8}, {0, 2, 11}, 40] (* Vincenzo Librandi, Jun 22 2016 *)
PROG
(Magma) I:=[0, 2, 11]; [n le 3 select I[n] else 6*Self(n-1)-12*Self(n-2)+8*Self(n-3): n in [1..41]]; // Vincenzo Librandi, Jun 22 2016
(SageMath) [n*(5+3*n)*2^(n-3) for n in (0..40)] # G. C. Greubel, May 24 2022
CROSSREFS
Sequences of S1(n, t): A001792 (t=0), this sequence (t=1), A089659 (t=2), A089660 (t=3), A089661 (t=4), A089662 (t=5), A089663 (t=6).
Sequence in context: A107020 A160945 A079808 * A219100 A140322 A027247
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 04 2004
STATUS
approved